Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38907526

RESUMO

Cyanobacteria play a key role in primary production in both oceans and fresh waters and hold great potential for sustainable production of a large number of commodities. During their life, cyanobacteria cells need to acclimate to a multitude of challenges, including shifts in intensity and quality of incident light. Despite our increasing understanding of metabolic regulation under various light regimes, detailed insight into fitness advantages and limitations under shifting light quality remains underexplored. Here, we study photo-physiological acclimation in the cyanobacterium Synechocystis sp. PCC 6803 throughout the photosynthetically active radiation (PAR) range. Using light emitting diodes (LEDs) with qualitatively different narrow spectra, we describe wavelength dependence of light capture, electron transport and energy transduction to main cellular pools. In addition, we describe processes that fine-tune light capture, such as state transitions, or the efficiency of energy transfer from phycobilisomes to photosystems (PS). We show that growth was the most limited under blue light due to inefficient light harvesting, and that many cellular processes are tightly linked to the redox state of the plastoquinone (PQ) pool, which was the most reduced under red light. The PSI-to-PSII ratio was low under blue photons, however, it was not the main growth-limiting factor, since it was even more reduced under violet and near far-red lights, where Synechocystis grew faster compared to blue light. Our results provide insight into the spectral dependence of phototrophic growth and can provide the foundation for future studies of molecular mechanisms underlying light acclimation in cyanobacteria, leading to light optimization in controlled cultivations.

2.
Int J Mol Sci ; 24(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37240058

RESUMO

The dinoflagellate algae, Symbiodiniaceae, are significant symbiotic partners of corals due to their photosynthetic capacity. The photosynthetic processes of the microalgae consist of linear electron transport, which provides the energetic balance of ATP and NADPH production for CO2 fixation, and alternative electron transport pathways, including cyclic electron flow, which ensures the elevated ATP requirements under stress conditions. Flash-induced chlorophyll fluorescence relaxation is a non-invasive tool to assess the various electron transport pathways. A special case of fluorescence relaxation, the so-called wave phenomenon, was found to be associated with the activity of NAD(P)H dehydrogenase (NDH) in microalgae. We showed previously that the wave phenomenon existed in Symbiodiniaceae under acute heat stress and microaerobic conditions, however, the electron transport processes related to the wave phenomenon remained unknown. In this work, using various inhibitors, we show that (i) the linear electron transport has a crucial role in the formation of the wave, (ii) the inhibition of the donor side of Photosystem II did not induce the wave, whereas inhibition of the Calvin-Benson cycle accelerated it, (iii) the wave phenomenon was related to the operation of type II NDH (NDH-2). We therefore propose that the wave phenomenon is an important marker of the regulation of electron transport in Symbiodiniaceae.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/metabolismo , Fluorescência , Complexo de Proteína do Fotossistema I/metabolismo , Fotossíntese/fisiologia , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo , Dinoflagellida/metabolismo , Trifosfato de Adenosina/metabolismo , Clorofila/metabolismo
3.
Photosynth Res ; 152(2): 235-244, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35166999

RESUMO

Flash-induced chlorophyll fluorescence relaxation is a powerful tool to monitor the reoxidation reactions of the reduced primary quinone acceptor, QA- by QB and the plastoquinone (PQ) pool, as well as the charge recombination reactions between the donor and acceptor side components of Photosystem II (PSII). Under certain conditions, when the PQ pool is highly reduced (e.g. in microaerobic conditions), a wave phenomenon appears in the fluorescence relaxation kinetics, which reflects the transient reoxidation and re-reduction of QA- by various electron transfer processes, which in cyanobacteria is mediated by NAD(P)H dehydrogenase (NDH-1). The wave phenomenon was also observed and assigned to the operation of type 2 NAD(P)H dehydrogenase (NDH-2) in the green alga Chlamydomonas reinhardtii under hydrogen-producing conditions, which required a long incubation of algae under sulphur deprivation (Krishna et al. J Exp Bot 70 (21):6321-6336, 2019). However, the conditions that induce the wave remained largely uncharacterized so far in microalgae. In this work, we investigated the wave phenomenon in Chlamydomonas reinhardtii under conditions that lead to a decrease of PSII activity by applying hydroxylamine treatment, which impacts the donor side of PSII in combination with a strongly reducing environment of the PQ pool (microaerobic conditions). A similar wave phenomenon could be induced by photoinhibitory conditions (illumination with strong light in the presence of the protein synthesis inhibitor lincomycin). These results indicate that the fluorescence wave phenomenon is activated in green algae when the PSII activity decreases relative to Photosystem I (PS I) activity and the PQ pool is strongly reduced. Therefore, the fluorescence wave could be used as a sensitive indicator of altered intersystem electron transfer processes, e.g. under stress conditions.


Assuntos
Chlamydomonas reinhardtii , Clorofila , Transporte de Elétrons , Fluorescência , NAD , Oxirredução , Oxirredutases , Complexo de Proteína do Fotossistema II , Plastoquinona
4.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563318

RESUMO

Photosynthesis is a series of redox reactions, in which several electron transport processes operate to provide the energetic balance of light harvesting. In addition to linear electron flow, which ensures the basic functions of photosynthetic productivity and carbon fixation, alternative electron transport pathways operate, such as the cyclic electron flow (CEF), which play a role in the fine tuning of photosynthesis and balancing the ATP/NADPH ratio under stress conditions. In this work, we characterized the electron transport processes in microalgae species that have high relevance in applied research and industry (e.g., Chlorella sorokiniana, Haematococcus pluvialis, Dunaliella salina, Nannochloropsis sp.) by using flash-induced fluorescence relaxation kinetics. We found that a wave phenomenon appeared in the fluorescence relaxation profiles of microalgae to different extents; it was remarkable in the red cells of H. pluvialis, D. salina and C. sorokiniana, but it was absent in green cells of H. pluvialis and N. limnetica. Furthermore, in microalgae, unlike in cyanobacteria, the appearance of the wave required the partial decrease in the activity of Photosystem II, because the relatively high Photosystem II/Photosystem I ratio in microalgae prevented the enhanced oxidation of the plastoquinone pool. The wave phenomenon was shown to be related to the antimycin A-sensitive pathway of CEF in C. sorokiniana but not in other species. Therefore, the fluorescence wave phenomenon appears to be a species-specific indicator of the redox reactions of the plastoquinone pool and certain pathways of cyclic electron flow.


Assuntos
Chlorella , Microalgas , Chlorella/metabolismo , Clorofila/metabolismo , Transporte de Elétrons , Elétrons , Fluorescência , Microalgas/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Plastoquinona
5.
Empirica (Dordr) ; 49(4): 1123-1151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311484

RESUMO

This paper explores liquidity management practices in Czech open-ended bond and equity funds. I reconstruct cash flows stemming from investors and securities, and cash flows related to purchases and sales in portfolios and margin calls to study liquidity transformation and liquidity management in investment funds. I study how portfolio illiquidity and current market conditions influence the joint behavior between investor redemptions and funds' liquidity management. I point to a strong propensity to reduce the liquid buffers rather than sales of securities to meet redemptions in bond funds. The propensity increases with portfolio illiquidity. I show equity funds historically tended to dash for cash in response to investor redemptions during a severe market turmoil.

6.
Photosynth Res ; 149(1-2): 93-105, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34009505

RESUMO

Singlet oxygen (1O2) is an important damaging agent, which is produced during illumination by the interaction of the triplet excited state pigment molecules with molecular oxygen. In cells of photosynthetic organisms 1O2 is formed primarily in chlorophyll containing complexes, and damages pigments, lipids, proteins and other cellular constituents in their environment. A useful approach to study the physiological role of 1O2 is the utilization of external photosensitizers. In the present study, we employed a multiwell plate-based screening method in combination with chlorophyll fluorescence imaging to characterize the effect of externally produced 1O2 on the photosynthetic activity of isolated thylakoid membranes and intact Chlorella sorokiniana cells. The results show that the external 1O2 produced by the photosensitization reactions of Rose Bengal damages Photosystem II both in isolated thylakoid membranes and in intact cells in a concentration dependent manner indicating that 1O2 plays a significant role in photodamage of Photosystem II.


Assuntos
Chlorella/efeitos dos fármacos , Chlorella/metabolismo , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Oxigênio Singlete/efeitos adversos , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/metabolismo , Tilacoides/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Oxigênio Singlete/metabolismo , Tilacoides/metabolismo
7.
Photosynth Res ; 149(1-2): 253-258, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34319557

RESUMO

To finish this special issue, some friends, colleagues and students of Prof. Chow (Emeritus Professor, the Research School of Biology, the Australian National University) have written small tributes to acknowledge not only his eminent career but to describe his wonderful personality.


Assuntos
Biofísica/história , Docentes/história , Fotossíntese , Pesquisadores/história , Adulto , Austrália , China , História do Século XX , Humanos , Masculino , Pessoa de Meia-Idade
8.
Physiol Plant ; 171(2): 291-300, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33314124

RESUMO

The so-called afterglow, AG, thermoluminescence (TL) band is a useful indicator of the presence of cyclic electron flow (CEF), which is mediated by the NADH dehydrogenase-like (NDH) complex in higher plants. Although NDH-dependent CEF occurs also in cyanobacteria, the AG band has previously not been found in these organisms. In the present study, we tested various experimental conditions and could identify a TL component with ca. +40°C peak temperature in Synechocystis PCC 6803 cells, which were illuminated by far-red (FR) light at around -10°C. The +40°C band could be observed when WT cells were grown under ambient air level CO2 , but was absent in the M55 mutant, which is deficient in the NDH-1 complex. These experimental observations match the characteristics of the AG band of higher plants. Therefore, we conclude that the newly identified +40°C TL component in Synechocystis PCC 6803 is the cyanobacterial counterpart of the plant AG band and originates from NDH-1-mediated CEF. The cyanobacterial AG band was most efficiently induced when FR illumination was applied at -10°C and its contribution to the total TL intensity declined when cells were illuminated above and below this temperature. Based on this phenomenon we also conclude that CEF is blocked by low temperatures at two different sites in Synechocystis PCC 6803: (1) Below -10°C at the level of NDH-1 and (2) below -30°C at the donor or acceptor side of Photosystem I.


Assuntos
Synechocystis , Transporte de Elétrons , Luz , Complexo de Proteína do Fotossistema I/metabolismo , Prata , Synechocystis/metabolismo
9.
Photosynth Res ; 142(3): 361-368, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31541419

RESUMO

Chlorophyll a fluorescence is the most widely used method to study photosynthesis and plant stress. While several commercial fluorometers are available, there is a need for a low-cost and highly customisable chlorophyll fluorometer. Such a device would aid in performing high-throughput assessment of photosynthesis, as these instruments can be mass-produced. Novel investigations into photosynthesis can also be performed as a result of the user's ability to modify the devices functionality for their specific needs. Motivated by this, we present an open-source chlorophyll fluorometer based on the Kautsky induction curve (OJIP). The instrument consists of low-cost, easy-to-acquire electrical components and an open-source microcontroller (Arduino Mega) whose performance is equivalent to that of commercial instruments. Two 3D printable Open-JIP configurations are presented, one for higher plants and the other for microalgae cells in suspension. Directions for its construction are presented and the instrument is benchmarked against widely used commercial chlorophyll fluorometers.


Assuntos
Clorofila A/química , Fluorometria/instrumentação , Chlorella vulgaris/química , Desenho de Equipamento , Fluorescência , Fluorometria/métodos , Microalgas/química , Microalgas/metabolismo , Plantas/química , Plantas/metabolismo , Synechococcus/química
10.
Photosynth Res ; 136(2): 147-160, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28980125

RESUMO

Seagrasses are a diverse group of angiosperms that evolved to live in shallow coastal waters, an environment regularly subjected to changes in oxygen, carbon dioxide and irradiance. Zostera muelleri is the dominant species in south-eastern Australia, and is critical for healthy coastal ecosystems. Despite its ecological importance, little is known about the pathways of carbon fixation in Z. muelleri and their regulation in response to environmental changes. In this study, the response of Z. muelleri exposed to control and very low oxygen conditions was investigated by using (i) oxygen microsensors combined with a custom-made flow chamber to measure changes in photosynthesis and respiration, and (ii) reverse transcription quantitative real-time PCR to measure changes in expression levels of key genes involved in C4 metabolism. We found that very low levels of oxygen (i) altered the photophysiology of Z. muelleri, a characteristic of C3 mechanism of carbon assimilation, and (ii) decreased the expression levels of phosphoenolpyruvate carboxylase and carbonic anhydrase. These molecular-physiological results suggest that regulation of the photophysiology of Z. muelleri might involve a close integration between the C3 and C4, or other CO2 concentrating mechanisms metabolic pathways. Overall, this study highlights that the photophysiological response of Z. muelleri to changing oxygen in water is capable of rapid acclimation and the dynamic modulation of pathways should be considered when assessing seagrass primary production.


Assuntos
Carbono/metabolismo , Proteínas de Plantas/genética , Zosteraceae/fisiologia , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Regulação da Expressão Gênica de Plantas , Oxigênio/metabolismo , Fosfoenolpiruvato Carboxilase/genética , Fosfoenolpiruvato Carboxilase/metabolismo , Fotossíntese/fisiologia , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
11.
New Phytol ; 212(2): 472-84, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27321415

RESUMO

Coral bleaching is an important environmental phenomenon, whose mechanism has not yet been clarified. The involvement of reactive oxygen species (ROS) has been implicated, but direct evidence of what species are involved, their location and their mechanisms of production remains unknown. Histidine-mediated chemical trapping and singlet oxygen sensor green (SOSG) were used to detect intra- and extracellular singlet oxygen ((1) O2 ) in Symbiodinium cultures. Inhibition of the Calvin-Benson cycle by thermal stress or high light promotes intracellular (1) O2 formation. Histidine addition, which decreases the amount of intracellular (1) O2 , provides partial protection against photosystem II photoinactivation and chlorophyll (Chl) bleaching. (1) O2 production also occurs in cell-free medium of Symbiodinium cultures, an effect that is enhanced under heat and light stress and can be attributed to the excretion of (1) O2 -sensitizing metabolites from the cells. Confocal microscopy imaging using SOSG showed most extracellular (1) O2 around the cell surface, but it is also produced across the medium distant from the cells. We demonstrate, for the first time, both intra- and extracellular (1) O2 production in Symbiodinium cultures. Intracellular (1) O2 is associated with photosystem II photodamage and pigment bleaching, whereas extracellular (1) O2 has the potential to mediate the breakdown of symbiotic interaction between zooxanthellae and their animal host during coral bleaching.


Assuntos
Antozoários/fisiologia , Dinoflagellida/citologia , Dinoflagellida/efeitos da radiação , Luz , Fotossíntese/efeitos da radiação , Oxigênio Singlete/metabolismo , Simbiose/efeitos da radiação , Animais , Dinoflagellida/efeitos dos fármacos , Espaço Extracelular/química , Fluorescência , Histidina/farmacologia , Temperatura Alta , Espaço Intracelular/química , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Pigmentos Biológicos/metabolismo , Simbiose/efeitos dos fármacos
13.
Biochim Biophys Acta ; 1837(8): 1227-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24721391

RESUMO

Dinoflagellates from the genus Symbiodinium form symbiotic associations with cnidarians including corals and anemones. The photosynthetic apparatuses of these dinoflagellates possess a unique photosynthetic antenna system incorporating the peridinin-chlorophyll a-protein (PCP). It has been proposed that the appearance of a PCP-specific 77K fluorescence emission band around 672-675 nm indicates that high light treatment results in PCP dissociation from intrinsic membrane antenna complexes, blocking excitation transfer to the intrinsic membrane-bound antenna complexes, chlorophyll a-chlorophyll c2-peridinin-protein-complex (acpPC) and associated photosystems (Reynolds et al., 2008 Proc Natl Acad Sci USA 105:13674-13678).We have tested this model using time-resolved fluorescence decay kinetics in conjunction with global fitting to compare the time-evolution of the PCP spectral bands before and after high light exposure. Our results show that no long-lived PCP fluorescence emission components appear either before or after high light treatment, indicating that the efficiency of excitation transfer from PCP to membrane antenna systems remains efficient and rapid even after exposure to high light. The apparent increased relative emission at around 675nm was, instead, caused by strong preferential exciton quenching of the membrane antenna complexes associated with acpPC and reaction centers. This strong non-photochemical quenching (NPQ) is consistent with the activation of xanthophyll-associated quenching mechanisms and the generally-observed avoidance in nature of long-lived photoexcited states that can lead to oxidative damage. The acpPC component appears to be the most strongly quenched under high light exposure suggesting that it houses the photoprotective exciton quencher.


Assuntos
Carotenoides/genética , Dinoflagellida/genética , Complexos de Proteínas Captadores de Luz/genética , Fotossíntese/genética , Proteínas de Protozoários/genética , Carotenoides/química , Dinoflagellida/crescimento & desenvolvimento , Transferência de Energia , Fluorescência , Cinética , Luz , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II , Proteínas de Protozoários/química
14.
New Phytol ; 208(2): 370-81, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26017701

RESUMO

Dinoflagellates of the genus Symbiodinium express broad diversity in both genetic identity (phylogeny) and photosynthetic function to presumably optimize ecological success across extreme light environments; however, whether differences in the primary photobiological characteristics that govern photosynthetic optimization are ultimately a function of phylogeny is entirely unresolved. We applied a novel fast repetition rate fluorometry approach to screen genetically distinct Symbiodinium types (n = 18) spanning five clades (A-D, F) for potential phylogenetic trends in factors modulating light absorption (effective cross-section, reaction center content) and utilization (photochemical vs dynamic nonphotochemical quenching; [1 - C] vs [1 - Q]) by photosystem II (PSII). The variability of PSII light absorption was independent of phylogenetic designation, but closely correlated with cell size across types, whereas PSII light utilization intriguingly followed one of three characteristic patterns: (1) similar reliance on [1 - C] and [1 - Q] or (2) preferential reliance on [1 - C] (mostly A, B types) vs (3) preferential reliance on [1 - Q] (mostly C, D, F types), and thus generally consistent with cladal designation. Our functional trait-based approach shows, for the first time, how Symbiodinium photosynthetic function is governed by the interplay between phylogenetically dependent and independent traits, and is potentially a means to reconcile complex biogeographic patterns of Symbiodinium phylogenetic diversity in nature.


Assuntos
Biodiversidade , Dinoflagellida/citologia , Fotoquímica , Filogenia , Tamanho Celular/efeitos da radiação , Dinoflagellida/efeitos da radiação , Transporte de Elétrons/efeitos da radiação , Geografia , Luz , Dados de Sequência Molecular , Complexo de Proteína do Fotossistema II/metabolismo
15.
J Exp Biol ; 217(Pt 4): 489-98, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24523498

RESUMO

Coral tissue optics has received very little attention in the past, although the interaction between tissue and light is central to our basic understanding of coral physiology. Here we used fibre-optic and electrochemical microsensors along with variable chlorophyll fluorescence imaging to directly measure lateral light propagation within living coral tissues. Our results show that corals can transfer light laterally within their tissues to a distance of ~2 cm. Such light transport stimulates O2 evolution and photosystem II operating efficiency in areas >0.5-1 cm away from direct illumination. Light is scattered strongly in both coral tissue and skeleton, leading to photon trapping and lateral redistribution within the tissue. Lateral light transfer in coral tissue is a new mechanism by which light is redistributed over the coral colony and we argue that tissue optical properties are one of the key factors in explaining the high photosynthetic efficiency of corals.


Assuntos
Antozoários/fisiologia , Dinoflagellida/fisiologia , Microalgas/fisiologia , Animais , Antozoários/efeitos da radiação , Clorofila/metabolismo , Imagem Óptica , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II , Luz Solar , Simbiose
16.
J Exp Biol ; 217(Pt 12): 2150-62, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24675559

RESUMO

Two inhibitors of the Calvin-Benson cycle [glycolaldehyde (GA) and potassium cyanide (KCN)] were used in cultured Symbiodinium cells and in nubbins of the coral Pocillopora damicornis to test the hypothesis that inhibition of the Calvin-Benson cycle triggers coral bleaching. Inhibitor concentration range-finding trials aimed to determine the appropriate concentration to generate inhibition of the Calvin-Benson cycle, but avoid other metabolic impacts to the symbiont and the animal host. Both 3 mmol l(-1) GA and 20 µmol l(-1) KCN caused minimal inhibition of host respiration, but did induce photosynthetic impairment, measured by a loss of photosystem II function and oxygen production. GA did not affect the severity of bleaching, nor induce bleaching in the absence of thermal stress, suggesting inhibition of the Calvin-Benson cycle by GA does not initiate bleaching in P. damicornis. In contrast, KCN did activate a bleaching response through symbiont expulsion, which occurred in the presence and absence of thermal stress. While KCN is an inhibitor of the Calvin-Benson cycle, it also promotes reactive oxygen species formation, and it is likely that this was the principal agent in the coral bleaching process. These findings do not support the hypothesis that temperature-induced inhibition of the Calvin-Benson cycle alone induces coral bleaching.


Assuntos
Antozoários/metabolismo , Antozoários/microbiologia , Dióxido de Carbono/metabolismo , Dinoflagellida/metabolismo , Fotossíntese , Acetaldeído/análogos & derivados , Acetaldeído/metabolismo , Animais , Temperatura Alta , Cianeto de Potássio/metabolismo , Estresse Fisiológico , Simbiose
17.
Biochim Biophys Acta ; 1817(8): 1388-91, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22248669

RESUMO

By using low temperature fluorescence spectroscopy, it has been shown that exposing chloroplast thylakoid membranes to acidic pH reversibly decreases the fluorescence of photosystem II while the fluorescence of photosystem I increases [P. Singh-Rawal et al. (2010) Evidence that pH can drive state transitions in isolated thylakoid membranes from spinach, Photochem Photobiol Sci, 9 830-837]. In order to shed light on the origin of these changes, we performed circular dichroism (CD) spectroscopy on freshly isolated pea thylakoid membranes. We show that the magnitude of the psi-type CD, which is associated with the presence of chirally ordered macroarrays of the chromophores in intact thylakoid membranes, decreases gradually and reversibly upon gradually lowering the pH of the medium from 7.5 to 4.5 (psi, polymer or salt induced). The same treatment, as shown on thylakoid membranes washed in hypotonic low salt medium possessing no psi-type bands, induces no discernible change in the excitonic CD. These data show that while no change in the pigment-pigment interactions and thus in the molecular organization of the bulk protein complexes can be held responsible for the observed changes in the fluorescence, acidification of the medium significantly alters the macro-organization of the complexes, hence providing an explanation for the pH-induced redistribution of the excitation energy between the two photosystems. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Assuntos
Tilacoides/química , Dicroísmo Circular , Concentração de Íons de Hidrogênio
18.
J Am Chem Soc ; 134(2): 944-54, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22148684

RESUMO

Being able to control in time and space the positioning, orientation, movement, and sense of rotation of nano- to microscale objects is currently an active research area in nanoscience, having diverse nanotechnological applications. In this paper, we demonstrate unprecedented control and maneuvering of rod-shaped or tubular nanostructures with high aspect ratios which are formed by self-assembling synthetic porphyrins. The self-assembly algorithm, encoded by appended chemical-recognition groups on the periphery of these porphyrins, is the same as the one operating for chlorosomal bacteriochlorophylls (BChl's). Chlorosomes, rod-shaped organelles with relatively long-range molecular order, are the most efficient naturally occurring light-harvesting systems. They are used by green photosynthetic bacteria to trap visible and infrared light of minute intensities even at great depths, e.g., 100 m below water surface or in volcanic vents in the absence of solar radiation. In contrast to most other natural light-harvesting systems, the chlorosomal antennae are devoid of a protein scaffold to orient the BChl's; thus, they are an attractive goal for mimicry by synthetic chemists, who are able to engineer more robust chromophores to self-assemble. Functional devices with environmentally friendly chromophores-which should be able to act as photosensitizers within hybrid solar cells, leading to high photon-to-current conversion efficiencies even under low illumination conditions-have yet to be fabricated. The orderly manner in which the BChl's and their synthetic counterparts self-assemble imparts strong diamagnetic and optical anisotropies and flow/shear characteristics to their nanostructured assemblies, allowing them to be manipulated by electrical, magnetic, or tribomechanical forces.


Assuntos
Complexos de Proteínas Captadores de Luz/síntese química , Porfirinas/síntese química , Anisotropia , Bacterioclorofilas/química , Dicroísmo Circular , Membranas Artificiais , Microscopia Eletrônica de Varredura , Modelos Moleculares , Estrutura Molecular
19.
Plant Physiol ; 157(2): 905-16, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21807886

RESUMO

Three biophysical approaches were used to get insight into increased thermostability of thylakoid membranes in isoprene-emittingplants.Arabidopsis (Arabidopsis thaliana) plants genetically modified to make isoprene and Platanus orientalis leaves, in which isoprene emission was chemically inhibited, were used. First, in the circular dichroism spectrum the transition temperature of the main band at 694 nm was higher in the presence of isoprene, indicating that the heat stability of chiral macrodomains of chloroplast membranes, and specifically the stability of ordered arrays of light-harvesting complex II-photosystem II in the stacked region of the thylakoid grana, was improved in the presence of isoprene. Second, the decay of electrochromic absorbance changes resulting from the electric field component of the proton motive force (ΔA515) was evaluated following single-turnover saturating flashes. The decay of ΔA515 was faster in the absence of isoprene when leaves of Arabidopsis and Platanus were exposed to high temperature, indicating that isoprene protects the thylakoid membranes against leakiness at elevated temperature. Finally, thermoluminescence measurements revealed that S2Q(B)⁻ charge recombination was shifted to higher temperature in Arabidopsis and Platanus plants in the presence of isoprene, indicating higher activation energy for S2Q(B)⁻ redox pair, which enables isoprene-emitting plants to perform efficient primary photochemistry of photosystem II even at higher temperatures. The data provide biophysical evidence that isoprene improves the integrity and functionality of the thylakoid membranes at high temperature. These results contribute to our understanding of isoprene mechanism of action in plant protection against environmental stresses.


Assuntos
Arabidopsis/metabolismo , Biofísica/métodos , Butadienos/metabolismo , Hemiterpenos/metabolismo , Magnoliopsida/metabolismo , Pentanos/metabolismo , Folhas de Planta/metabolismo , Tilacoides/química , Alquil e Aril Transferases/genética , Arabidopsis/genética , Cloroplastos/metabolismo , Dicroísmo Circular , Temperatura Alta , Complexos de Proteínas Captadores de Luz/análise , Complexo de Proteína do Fotossistema II/análise , Plantas Geneticamente Modificadas , Pueraria/enzimologia , Pueraria/genética , Tilacoides/metabolismo , Árvores
20.
Photosynth Res ; 111(1-2): 71-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21986933

RESUMO

Diatoms possess effective photoprotection mechanisms, which may involve reorganizations in the photosynthetic machinery. We have shown earlier, by using circular dichroism (CD) spectroscopy, that in Phaeodactylum tricornutum the pigment-protein complexes are arranged into chiral macrodomains, which have been proposed to be associated with the multilamellar organization of the thylakoid membranes and shown to be capable of undergoing light-induced reversible reorganizations (Szabó et al. Photosynth Res 95:237, 2008). Recently, by using small-angle neutron scattering (SANS) on the same algal cells we have determined the repeat distances and revealed reversible light-induced reorganizations in the lamellar order of thylakoids (Nagy et al. Biochem J 436:225, 2011). In this study, we show that in moderately heat-treated samples, the weakening of the lamellar order is accompanied by the diminishment of the psi-type CD signal associated with the long-range chiral order of the chromophores (psi, polymer or salt-induced). Further, we show that the light-induced reversible increase in the psi-type CD is associated with swelling in the membrane system, with magnitudes larger in high light than in low light. In contrast, shrinkage of the membrane system, induced by sorbitol, brings about a decrease in the psi-type CD signal; this shrinkage also diminishes the non-photochemical quenching capability of the cells. These data shed light on the origin of the psi-type CD signal, and confirm that both CD spectroscopy and SANS provide valuable information on the macro-organization of the thylakoid membranes and their dynamic properties; these parameters are evidently of interest with regard to the photoprotection in whole algal cells.


Assuntos
Diatomáceas/química , Tilacoides/química , Clorofila/química , Dicroísmo Circular , Temperatura Alta , Luz , Conformação Molecular , Nêutrons , Concentração Osmolar , Fotossíntese , Espalhamento a Baixo Ângulo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA