Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542257

RESUMO

While essential hypertension (HTN) is very prevalent, pulmonary arterial hypertension (PAH) is very rare in the general population. However, due to progressive heart failure, prognoses and survival rates are much worse in PAH. Patients with PAH are at a higher risk of developing supraventricular arrhythmias and malignant ventricular arrhythmias. The latter underlie sudden cardiac death regardless of the mechanical cardiac dysfunction. Systemic chronic inflammation and oxidative stress are causal factors that increase the risk of the occurrence of cardiac arrhythmias in hypertension. These stressful factors contribute to endothelial dysfunction and arterial pressure overload, resulting in the development of cardiac pro-arrhythmic conditions, including myocardial structural, ion channel and connexin43 (Cx43) channel remodeling and their dysfunction. Myocardial fibrosis appears to be a crucial proarrhythmic substrate linked with myocardial electrical instability due to the downregulation and abnormal topology of electrical coupling protein Cx43. Furthermore, these conditions promote ventricular mechanical dysfunction and heart failure. The treatment algorithm in HTN is superior to PAH, likely due to the paucity of comprehensive pathomechanisms and causal factors for a multitargeted approach in PAH. The intention of this review is to provide information regarding the role of Cx43 in the development of cardiac arrhythmias in hypertensive heart disease. Furthermore, information on the progress of therapy in terms of its cardioprotective and potentially antiarrhythmic effects is included. Specifically, the benefits of sodium glucose co-transporter inhibitors (SGLT2i), as well as sotatercept, pirfenidone, ranolazine, nintedanib, mirabegron and melatonin are discussed. Discovering novel therapeutic and antiarrhythmic strategies may be challenging for further research. Undoubtedly, such research should include protection of the heart from inflammation and oxidative stress, as these are primary pro-arrhythmic factors that jeopardize cardiac Cx43 homeostasis, the integrity of intercalated disk and extracellular matrix, and, thereby, heart function.


Assuntos
Insuficiência Cardíaca , Hipertensão , Hipertensão Arterial Pulmonar , Humanos , Conexina 43/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/etiologia , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Doença do Sistema de Condução Cardíaco , Hipertensão Pulmonar Primária Familiar/complicações , Hipertensão/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Inflamação/tratamento farmacológico
2.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834901

RESUMO

The extracellular matrix (ECM) is a highly dynamic structure controlling the proper functioning of heart muscle. ECM remodeling with enhanced collagen deposition due to hemodynamic overload impairs cardiomyocyte adhesion and electrical coupling that contributes to cardiac mechanical dysfunction and arrhythmias. We aimed to explore ECM and connexin-43 (Cx43) signaling pathways in hemodynamically overloaded rat heart as well as the possible implication of angiotensin (1-7) (Ang (1-7)) to prevent/attenuate adverse myocardial remodeling. Male 8-week-old, normotensive Hannover Spraque-Dawley rats (HSD), hypertensive (mRen-2)27 transgenic rats (TGR) and Ang (1-7) transgenic rats (TGR(A1-7)3292) underwent aortocaval fistula (ACF) to produce volume overload. Five weeks later, biometric and heart tissue analyses were performed. Cardiac hypertrophy in response to volume overload was significantly less pronounced in TGR(A1-7)3292 compared to HSD rats. Moreover, a marker of fibrosis hydroxyproline was increased in both ventricles of volume-overloaded TGR while it was reduced in the Ang (1-7) right heart ventricle. The protein level and activity of MMP-2 were reduced in both ventricles of volume-overloaded TGR/TGR(A1-7)3292 compared to HSD. SMAD2/3 protein levels were decreased in the right ventricle of TGR(A1-7)3292 compared to HSD/TGR in response to volume overload. In parallel, Cx43 and pCx43 implicated in electrical coupling were increased in TGR(A1-7)3292 versus HSD/TGR. It can be concluded that Ang (1-7) exhibits cardio-protective and anti-fibrotic potential in conditions of cardiac volume overload.


Assuntos
Insuficiência Cardíaca , Hipertensão , Ratos , Animais , Masculino , Ratos Transgênicos , Conexina 43 , Coração , Hipertensão/metabolismo , Fibrose , Angiotensina II
3.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569306

RESUMO

Melatonin has been reported to cause myocardial electrophysiological changes and prevent ventricular tachycardia or fibrillation (VT/VF) in ischemia and reperfusion. We sought to identify electrophysiological targets responsible for the melatonin antiarrhythmic action and to explore whether melatonin receptor-dependent pathways or its antioxidative properties are essential for these effects. Ischemia was induced in anesthetized rats given a placebo, melatonin, and/or luzindole (MT1/MT2 melatonin receptor blocker), and epicardial mapping with reperfusion VT/VFs assessment was performed. The oxidative stress assessment and Western blotting analysis were performed in the explanted hearts. Transmembrane potentials and ionic currents were recorded in cardiomyocytes with melatonin and/or luzindole application. Melatonin reduced reperfusion VT/VF incidence associated with local activation time in logistic regression analysis. Melatonin prevented ischemia-related conduction slowing and did not change the total connexin43 (Cx43) level or oxidative stress markers, but it increased the content of a phosphorylated Cx43 variant (P-Cx43368). Luzindole abolished the melatonin antiarrhythmic effect, slowed conduction, decreased total Cx43, protein kinase Cε and P-Cx43368 levels, and the IK1 current, and caused resting membrane potential (RMP) depolarization. Neither melatonin nor luzindole modified INa current. Thus, the antiarrhythmic effect of melatonin was mediated by the receptor-dependent enhancement of impulse conduction, which was associated with Cx43 phosphorylation and maintaining the RMP level.


Assuntos
Conexina 43 , Melatonina , Ratos , Animais , Conexina 43/metabolismo , Receptores de Melatonina/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/prevenção & controle , Miócitos Cardíacos/metabolismo
4.
Can J Physiol Pharmacol ; 99(1): 80-88, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33438486

RESUMO

Radiation damage of healthy tissues represents one of the complications of radiotherapy effectiveness. This study is focused on the screening of potentially effective drugs routinely used in medical practice and involved in the mechanism of radiation injury, namely for radiation-induced production of free radicals in the body. Experiments in rats revealed significant reduction of oxidative stress (malondialdehyde) and inflammatory marker (tumor necrosis factor α) in 10 Gy irradiated groups after administration of atorvastatin and a slight decrease after tadalafil administration, which indicates that one of the possible mechanisms for mitigation of radiation-induced cardiac damage could be the modulation of nitric oxide (NO) in endothelium and phosphodiesterase 5. In addition, miRNAs were analyzed as potential markers and therapeutically effective molecules. Expression of miRNA-21 and miRNA-15b showed the most significant changes after irradiation. Atorvastatin and tadalafil normalized changes of miRNA (miRNA-1, miRNA-15b, miRNA-21) expression levels in irradiated hearts. This screening study concludes that administration of specific drugs could mitigate the negative impact of radiation on the heart, but more detailed experiments oriented to other aspects of drug effectiveness and their exact mechanisms are still needed.


Assuntos
Atorvastatina/administração & dosagem , Cardiomiopatias/tratamento farmacológico , Coração/efeitos dos fármacos , Lesões Experimentais por Radiação/tratamento farmacológico , Tadalafila/administração & dosagem , Animais , Cardiomiopatias/sangue , Cardiomiopatias/diagnóstico , Cardiomiopatias/etiologia , Radicais Livres/sangue , Radicais Livres/metabolismo , Raios gama/efeitos adversos , Coração/efeitos da radiação , Masculino , Malondialdeído/sangue , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Lesões Experimentais por Radiação/sangue , Lesões Experimentais por Radiação/diagnóstico , Lesões Experimentais por Radiação/etiologia , Ratos , Resultado do Tratamento , Fator de Necrose Tumoral alfa/sangue
5.
Mar Drugs ; 19(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34940658

RESUMO

Light pollution disturbs circadian rhythm, and this can also be deleterious to the heart by increased susceptibility to arrhythmias. Herein, we investigated if rats exposed to continuous light had altered myocardial gene transcripts and/or protein expression which affects arrhythmogenesis. We then assessed if Omacor® supplementation benefitted affected rats. Male and female spontaneously hypertensive (SHR) and normotensive Wistar rats (WR) were housed under standard 12 h/12 h light/dark cycles or exposed to 6-weeks continuous 300 lux light for 24 h. Half the rats were then treated with 200 mg/100 g b.w. Omacor®. Continuous light resulted in higher male rat vulnerability to malignant ventricular fibrillation (VF). This was linked with myocardial connexin-43 (Cx43) down-regulation and deteriorated intercellular electrical coupling, due in part to increased pro-inflammatory NF-κB and iNOS transcripts and decreased sarcoplasmic reticulum Ca2+ATPase transcripts. Omacor® treatment increased the electrical threshold to induce the VF linked with amelioration of myocardial Cx43 mRNA and Cx43 protein levels and the suppression of NF-κB and iNOS. This indicates that rat exposure to continuous light results in deleterious cardiac alterations jeopardizing intercellular Cx43 channel-mediated electrical communication, thereby increasing the risk of malignant arrhythmias. The adverse effects were attenuated by treatment with Omacor®, thus supporting its potential benefit and the relevance of monitoring omega-3 index in human populations at risk.


Assuntos
Arritmias Cardíacas/prevenção & controle , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Poluição Luminosa , Estresse Fisiológico , Animais , Organismos Aquáticos , Arritmias Cardíacas/complicações , Arritmias Cardíacas/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Conexina 43/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/química , Combinação de Medicamentos , Ácido Eicosapentaenoico/administração & dosagem , Ácido Eicosapentaenoico/química , Feminino , Coração/efeitos dos fármacos , Hipertensão/complicações , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Wistar
6.
Int J Mol Sci ; 21(8)2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325836

RESUMO

A perennial task is to prevent the occurrence and/or recurrence of most frequent or life-threatening cardiac arrhythmias such as atrial fibrillation (AF) and ventricular fibrillation (VF). VF may be lethal in cases without an implantable cardioverter defibrillator or with failure of this device. Incidences of AF, even the asymptomatic ones, jeopardize the patient's life due to its complication, notably the high risk of embolic stroke. Therefore, there has been a growing interest in subclinical AF screening and searching for novel electrophysiological and molecular markers. Considering the worldwide increase in cases of thyroid dysfunction and diseases, including thyroid carcinoma, we aimed to explore the implication of thyroid hormones in pro-arrhythmic signaling in the pathophysiological setting. The present review provides updated information about the impact of altered thyroid status on both the occurrence and recurrence of cardiac arrhythmias, predominantly AF. Moreover, it emphasizes the importance of both thyroid status monitoring and AF screening in the general population, as well as in patients with thyroid dysfunction and malignancies. Real-world data on early AF identification in relation to thyroid function are scarce. Even though symptomatic AF is rare in patients with thyroid malignancies, who are under thyroid suppressive therapy, clinicians should be aware of potential interaction with asymptomatic AF. It may prevent adverse consequences and improve the quality of life. This issue may be challenging for an updated registry of AF in clinical practice. Thyroid hormones should be considered a biomarker for cardiac arrhythmias screening and their tailored management because of their multifaceted cellular actions.


Assuntos
Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/etiologia , Hipertireoidismo/complicações , Hipertireoidismo/metabolismo , Transdução de Sinais , Hormônios Tireóideos/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/etiologia , Cálcio/metabolismo , Gerenciamento Clínico , Suscetibilidade a Doenças , Metabolismo Energético/efeitos dos fármacos , Humanos , Hipertireoidismo/diagnóstico , Hipertireoidismo/etiologia , Canais Iônicos/metabolismo , Terapia de Alvo Molecular , Neoplasias da Glândula Tireoide/complicações , Neoplasias da Glândula Tireoide/terapia , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/etiologia
7.
Int J Mol Sci ; 21(1)2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31948131

RESUMO

Reactive oxygen species (ROS) are important molecules in the living organisms as a part of many signaling pathways. However, if overproduced, they also play a significant role in the development of cardiovascular diseases, such as arrhythmia, cardiomyopathy, ischemia/reperfusion injury (e.g., myocardial infarction and heart transplantation), and heart failure. As a result of oxidative stress action, apoptosis, hypertrophy, and fibrosis may occur. MicroRNAs (miRNAs) represent important endogenous nucleotides that regulate many biological processes, including those involved in heart damage caused by oxidative stress. Oxidative stress can alter the expression level of many miRNAs. These changes in miRNA expression occur mainly via modulation of nuclear factor erythroid 2-related factor 2 (Nrf2), sirtuins, calcineurin/nuclear factor of activated T cell (NFAT), or nuclear factor kappa B (NF-κB) pathways. Up until now, several circulating miRNAs have been reported to be potential biomarkers of ROS-related cardiac diseases, including myocardial infarction, hypertrophy, ischemia/reperfusion, and heart failure, such as miRNA-499, miRNA-199, miRNA-21, miRNA-144, miRNA-208a, miRNA-34a, etc. On the other hand, a lot of studies are aimed at using miRNAs for therapeutic purposes. This review points to the need for studying the role of redox-sensitive miRNAs, to identify more effective biomarkers and develop better therapeutic targets for oxidative-stress-related heart diseases.


Assuntos
Cardiomegalia/metabolismo , Doença da Artéria Coronariana/metabolismo , Insuficiência Cardíaca/metabolismo , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo/genética , Animais , Cardiomegalia/genética , Doença da Artéria Coronariana/genética , Insuficiência Cardíaca/genética , Humanos , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
8.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383853

RESUMO

Cardiac connexin-43 (Cx43) creates gap junction channels (GJCs) at intercellular contacts and hemi-channels (HCs) at the peri-junctional plasma membrane and sarcolemmal caveolae/rafts compartments. GJCs are fundamental for the direct cardiac cell-to-cell transmission of electrical and molecular signals which ensures synchronous myocardial contraction. The HCs and structurally similar pannexin1 (Panx1) channels are active in stressful conditions. These channels are essential for paracrine and autocrine communication through the release of ions and signaling molecules to the extracellular environment, or for uptake from it. The HCs and Panx1 channel-opening profoundly affects intracellular ionic homeostasis and redox status and facilitates via purinergic signaling pro-inflammatory and pro-fibrotic processes. These conditions promote cardiac arrhythmogenesis due to the impairment of the GJCs and selective ion channel function. Crosstalk between GJCs and HCs/Panx1 channels could be crucial in the development of arrhythmogenic substrates, including fibrosis. Despite the knowledge gap in the regulation of these channels, current evidence indicates that HCs and Panx1 channel activation can enhance the risk of cardiac arrhythmias. It is extremely challenging to target HCs and Panx1 channels by inhibitory agents to hamper development of cardiac rhythm disorders. Progress in this field may contribute to novel therapeutic approaches for patients prone to develop atrial or ventricular fibrillation.


Assuntos
Conexina 43/metabolismo , Conexinas/metabolismo , Ativação do Canal Iônico , Miocárdio/metabolismo , Animais , Antiarrítmicos/farmacologia , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Conexina 43/ultraestrutura , Conexinas/ultraestrutura , Suscetibilidade a Doenças , Humanos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Miocárdio/ultraestrutura
9.
Mol Cell Biochem ; 454(1-2): 191-202, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30446908

RESUMO

We aimed to explore whether specific high-sucrose intake in older female rats affects myocardial electrical coupling protein, connexin-43 (Cx43), protein kinase C (PKC) signaling, miR-1 and miR-30a expression, and susceptibility of the heart to malignant arrhythmias. Possible benefit of the supplementation with melatonin (40 µg/ml/day) and omega-3 polyunsaturated fatty acids (Omacor, 25 g/kg of rat chow) was examined as well. Results have shown that 8 weeks lasting intake of 30% sucrose solution increased serum cholesterol, triglycerides, body weight, heart weight, and retroperitoneal adipose tissues. It was accompanied by downregulation of cardiac Cx43 and PKCε signaling along with an upregulation of myocardial PKCδ and miR-30a rendering the heart prone to ventricular arrhythmias. There was a clear benefit of melatonin or omega-3 PUFA supplementation due to their antiarrhythmic effects associated with the attenuation of myocardial Cx43, PKC, and miR-30a abnormalities as well as adiposity. The potential impact of these findings may be considerable, and suggests that high-sucrose intake impairs myocardial signaling mediated by Cx43 and PKC contributing to increased susceptibility of the older obese female rat hearts to malignant arrhythmias.


Assuntos
Conexina 43/metabolismo , Sacarose Alimentar/efeitos adversos , Ácidos Graxos Ômega-3/farmacologia , Coração/efeitos dos fármacos , Melatonina/farmacologia , Obesidade/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Antiarrítmicos/metabolismo , Antiarrítmicos/farmacologia , Arritmias Cardíacas/etiologia , Ácidos Graxos Ômega-3/metabolismo , Feminino , Melatonina/metabolismo , MicroRNAs/metabolismo , Miocárdio/metabolismo , Obesidade/induzido quimicamente , Obesidade/complicações , Obesidade/metabolismo , Proteína Quinase C-delta/metabolismo , Proteína Quinase C-épsilon/metabolismo , Ratos , Ratos Wistar
10.
J Pineal Res ; 67(4): e12605, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31408542

RESUMO

Hypokalemia prolongs the QRS and QT intervals, deteriorates intercellular coupling, and increases the risk for arrhythmia. Melatonin preserves gap junctions and shortens action potential as potential antiarrhythmic mechanisms, but its properties under hypokalemia remain unknown. We hypothesized that melatonin protects against low potassium-induced arrhythmias through the activation of its receptors, resulting in action potential shortening and connexin-43 preservation. After stabilization in Krebs-Henseleit solution (4.5 mEq/L K+ ), isolated hearts from Wistar rats underwent perfusion with low-potassium (1 mEq/L) solution and melatonin (100 µmol/L), a melatonin receptor blocker (luzindole, 5 µmol/L), melatonin + luzindole or vehicle. The primary endpoint of the study was the prevention of ventricular fibrillation. Electrocardiography was used, and epicardial action potentials and heart function were measured and analyzed. The ventricular expression, dephosphorylation, and distribution of connexin-43 were examined. Melatonin reduced the incidence of low potassium-induced ventricular fibrillation from 100% to 59%, delayed the occurrence of ventricular fibrillation and induced a faster recovery of sinus rhythm during potassium restitution. Melatonin prevented QRS widening, action potential activation delay, and the prolongation of action potential duration at 50% of repolarization. Other ECG and action potential parameters, the left ventricular developed pressure, and nonsustained ventricular arrhythmias did not differ among groups. Melatonin prevented connexin-43 dephosphorylation and its abnormal topology (lateralization). Luzindole abrogated the protective effects of melatonin on electrophysiological properties and connexin-43 misdistribution. Our results indicate that melatonin receptor activation protects against low potassium-induced ventricular fibrillation, shortens action potential duration, preserves ventricular electrical activation, and prevents acute changes in connexin-43 distribution. All of these properties make melatonin a remarkable antifibrillatory agent.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Conexina 43/metabolismo , Melatonina/farmacologia , Miocárdio/metabolismo , Potássio/efeitos adversos , Receptores de Melatonina/metabolismo , Fibrilação Ventricular/metabolismo , Animais , Masculino , Miocárdio/patologia , Potássio/farmacologia , Ratos , Ratos Wistar , Fibrilação Ventricular/induzido quimicamente , Fibrilação Ventricular/patologia , Fibrilação Ventricular/fisiopatologia
11.
Can J Physiol Pharmacol ; 97(9): 829-836, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30908945

RESUMO

Two important aspects of cardiac adaptive response to pregnancy have been studied in normal as well as hypoxic conditions: (1) intercellular signaling mediated by myocardial connexin-43 (Cx43) that is crucial to synchronize heart function; (2) extracellular signaling mediated by matrix metalloproteinase-2 (MMP-2) that is an early marker of extracellular matrix remodeling. Myocardial Cx43 distribution and functional capillary density were determined as well. Hypoxia was induced by exposure of rats to 10.5% O2 and 89.5% N2 in a hermetically sealed chamber. Findings showed that pregnancy resulted in a significant increase of Cx43 protein expression, its functional phosphorylated forms, and enhanced capillary density while did not affect either expression of total MMP-2 or its activity. Maternal hypoxia for 12 or 16 h did not affect elevated Cx43 but enhanced its distribution on lateral sides of the cardiomyocytes. In contrast, hypoxia of nonpregnant rats resulted in upregulation of Cx43, its lateral distribution, and enhanced capillary density. Hypoxia did not affect myocardial MMP-2 either in pregnant or nonpregnant rats. Cardiac adaptive response to pregnancy is accompanied by enhanced Cx43 without changes in MMP-2 signaling. Pregnant rat heart is tolerant to short-term hypoxemia, while nonpregnant rat heart reacts by upregulation of Cx43 and increased capillary density.


Assuntos
Conexina 43/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Miocárdio/citologia , Oxigênio/metabolismo , Transdução de Sinais , Animais , Feminino , Miocárdio/metabolismo , Projetos Piloto , Gravidez , Ratos
12.
Int J Mol Sci ; 20(15)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374823

RESUMO

Heart function and its susceptibility to arrhythmias are modulated by thyroid hormones (THs) but the responsiveness of hypertensive individuals to thyroid dysfunction is elusive. We aimed to explore the effect of altered thyroid status on crucial factors affecting synchronized heart function, i.e., connexin-43 (Cx43) and extracellular matrix proteins (ECM), in spontaneously hypertensive rats (SHRs) compared to normotensive Wistar Kyoto rats (WKRs). Basal levels of circulating THs were similar in both strains. Hyperthyroid state (HT) was induced by injection of T3 (0.15 mg/kg b.w. for eight weeks) and hypothyroid state (HY) by the administration of methimazol (0.05% for eight weeks). The possible benefit of omega-3 polyunsaturated fatty acids (Omacor, 200 mg/kg for eight weeks) intake was examined as well. Reduced levels of Cx43 in SHRs were unaffected by alterations in THs, unlike WKRs, in which levels of Cx43 and its phosphorylated form at serine368 were decreased in the HT state and increased in the HY state. This specific Cx43 phosphorylation, attributed to enhanced protein kinase C-epsilon signaling, was also increased in HY SHRs. Altered thyroid status did not show significant differences in markers of ECM or collagen deposition in SHRs. WKRs exhibited a decrease in levels of profibrotic transforming growth factor ß1 and SMAD2/3 in HT and an increase in HY, along with enhanced interstitial collagen. Short-term intake of omega-3 polyunsaturated fatty acids did not affect any targeted proteins significantly. Key findings suggest that myocardial Cx43 and ECM responses to altered thyroid status are blunted in SHRs compared to WKRs. However, enhanced phosphorylation of Cx43 at serine368 in hypothyroid SHRs might be associated with preservation of intercellular coupling and alleviation of the propensity of the heart to malignant arrhythmias.


Assuntos
Conexina 43/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Hipertensão/metabolismo , Miocárdio/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Hipertensão/sangue , Masculino , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Hormônios Tireóideos/sangue
13.
Int J Mol Sci ; 19(4)2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642568

RESUMO

Radiation of the chest during cancer therapy is deleterious to the heart, mostly due to oxidative stress and inflammation related injury. A single sub-lethal dose of irradiation has been shown to result in compensatory up-regulation of the myocardial connexin-43 (Cx43), activation of the protein kinase C (PKC) signaling along with the decline of microRNA (miR)-1 and an increase of miR-21 levels in the left ventricle (LV). We investigated whether drugs with antioxidant, anti-inflammatory or vasodilating properties, such as aspirin, atorvastatin, and sildenafil, may affect myocardial response in the LV and right ventricle (RV) following chest irradiation. Adult, male Wistar rats were subjected to a single sub-lethal dose of chest radiation at 25 Gy and treated with aspirin (3 mg/day), atorvastatin (0.25 mg/day), and sildenafil (0.3 mg/day) for six weeks. Cx43, PKCε and PKCδ proteins expression and levels of miR-1 as well as miR-21 were determined in the LV and RV. Results showed that the suppression of miR-1 was associated with an increase of total and phosphorylated forms of Cx43 as well as PKCε expression in the LV while having no effect in the RV post-irradiation as compared to the non-irradiated rats. Treatment with aspirin and atorvastatin prevented an increase in the expression of Cx43 and PKCε without change in the miR-1 levels. Furthermore, treatment with aspirin, atorvastatin, and sildenafil completely prevented an increase of miR-21 in the LV while having partial effect in the RV post irradiation. The increase in pro-apoptotic PKCδ was not affected by any of the used treatment. In conclusion, irradiation and drug-induced changes were less pronounced in the RV as compared to the LV. Treatment with aspirin and atorvastatin interfered with irradiation-induced compensatory changes in myocardial Cx43 protein and miR-21 by preventing their elevation, possibly via amelioration of oxidative stress and inflammation.


Assuntos
Antioxidantes/farmacologia , Aspirina/farmacologia , Atorvastatina/farmacologia , Conexina 43/metabolismo , Coração/efeitos da radiação , MicroRNAs/genética , Lesões por Radiação/metabolismo , Animais , Antioxidantes/uso terapêutico , Aspirina/uso terapêutico , Atorvastatina/uso terapêutico , Masculino , Miocárdio/metabolismo , Lesões por Radiação/tratamento farmacológico , Radiação Ionizante , Ratos , Ratos Wistar
14.
Can J Physiol Pharmacol ; 95(8): 911-919, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28459162

RESUMO

We aimed to explore whether myocardial intercellular channel protein connexin-43 (Cx43) along with PKCε and MMP-2 might be implicated in responses to acute cardiac injury induced by 2 distinct sublethal interventions in Wistar rats. Animals underwent either single chest irradiation at dose of 25 Gy or subcutaneous injection of isoproterenol (ISO, 120 mg/kg) and were compared with untreated controls. Forty-two days post-interventions, the hearts were excised and left ventricles were used for analysis. The findings showed an increase of total as well as phosphorylated forms of myocardial Cx43 regardless of the type of interventions. Enhanced phosphorylation of Cx43 coincided with increased PKCε expression in both models. Elevation of Cx43 was associated with its enhanced distribution on lateral surfaces of the cardiomyocytes in response to both interventions, while focal areas of fibrosis without Cx43 were found in post-ISO but not post-irradiated rat hearts. In parallel, MMP-2 activity was decreased in the former while increased in the latter. Cardiac function was maintained and the susceptibility of the hearts to ischemia or malignant arrhythmias was not deteriorated 42 days after interventions when compared with controls. Altogether, the findings indicate that myocardial Cx43 is most likely implicated in potentially salutary responses to acute heart injury.


Assuntos
Cardiomiopatias/metabolismo , Conexina 43/metabolismo , Miocárdio/metabolismo , Regulação para Cima , Animais , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/patologia , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Espaço Extracelular/efeitos da radiação , Isoproterenol/efeitos adversos , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Miocárdio/patologia , Proteína Quinase C-épsilon/metabolismo , Ratos , Ratos Wistar , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/efeitos da radiação
15.
Can J Physiol Pharmacol ; 95(10): 1190-1203, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28750189

RESUMO

Irradiation of normal tissues leads to acute increase in reactive oxygen/nitrogen species that serve as intra- and inter-cellular signaling to alter cell and tissue function. In the case of chest irradiation, it can affect the heart, blood vessels, and lungs, with consequent tissue remodelation and adverse side effects and symptoms. This complex process is orchestrated by a large number of interacting molecular signals, including cytokines, chemokines, and growth factors. Inflammation, endothelial cell dysfunction, thrombogenesis, organ dysfunction, and ultimate failing of the heart occur as a pathological entity - "radiation-induced heart disease" (RIHD) that is major source of morbidity and mortality. The purpose of this review is to bring insights into the basic mechanisms of RIHD that may lead to the identification of targets for intervention in the radiotherapy side effect. Studies of authors also provide knowledge about how to select targeted drugs or biological molecules to modify the progression of radiation damage in the heart. New prospective studies are needed to validate that assessed factors and changes are useful as early markers of cardiac damage.


Assuntos
Vasos Coronários/efeitos da radiação , Cardiopatias/etiologia , Mediadores da Inflamação/metabolismo , Miócitos Cardíacos/efeitos da radiação , Lesões por Radiação/etiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos da radiação , Biomarcadores/metabolismo , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Dano ao DNA , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/efeitos da radiação , Cardiopatias/metabolismo , Cardiopatias/patologia , Humanos , Peroxidação de Lipídeos/efeitos da radiação , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos da radiação , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Transdução de Sinais/efeitos da radiação
16.
Int J Mol Sci ; 18(11)2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29160855

RESUMO

The purpose of this study was to investigate the effect of antioxidants rich red palm oil (RPO) supplementation on cardiac oxidative stress known as crucial factor deteriorating heart function in hypertension. 3-month-old, male spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) were fed standard rat chow without or with RPO (0.2 mL/day/5 weeks). General characteristic of rats were registered. Left ventricular tissue (LV) was used to determine expression of superoxide dismutases (SOD1, SOD2) and glutathione peroxidases (Gpx) as well as activity of nitric oxide synthase (NOS). Functional parameters of the heart were examined during basal conditions and at the early-phase of post-ischemic reperfusion using Langendorff-perfused system. RPO intake significantly reduced elevated blood pressure and total NOS activity as well as increased lowered expression of mitochondrial SOD2 in SHR hearts during basal condition. Moreover, RPO supplementation resulted in suppression of elevated heart rate, increase of reduced coronary flow and enhancement of systolic and diastolic heart function at the early-phase of post-ischemic reperfusion. It is concluded that SHR benefit from RPO intake due to decrease of blood pressure, amelioration of oxidative stress and protection of heart function that was deteriorated by post-ischemic reperfusion.


Assuntos
Antioxidantes/metabolismo , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Óxido Nítrico Sintase/metabolismo , Óleo de Palmeira/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Circulação Coronária/efeitos dos fármacos , Suplementos Nutricionais , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Testes de Função Cardíaca , Frequência Cardíaca/efeitos dos fármacos , Miocárdio/enzimologia , Ratos , Ratos Endogâmicos SHR , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Glutationa Peroxidase GPX1
17.
Gen Physiol Biophys ; 35(2): 215-22, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26830133

RESUMO

Intercellular connexin-43 (Cx43) channels are essential for electrical coupling and direct cardiac cell to cell communication to ensure heart function. Expression of Cx43 is altered due to stressful conditions and also affected by the alterations in extracellular matrix. We aimed to explore the effect of chest irradiation on myocardial expression of Cx43 and miR-1 which regulates GJA1 gene transcription for Cx43. Implication of miR-21 that regulates expression of extracellular matrix proteins and PKC signalling that may affect Cx43-mediated coupling was examined as well. Western blot and real-time PCR analyses revealed that six weeks after the exposure of healthy Wistar rats chest to single irradiation of 25 Gy significant myocardial alterations were observed: 1)/ increase of total Cx43 protein expression and its functional phosphorylated forms; 2) suppressed levels of miR-1; 3) enhanced expression of PKCε which phosphorylates Cx43; 4) increase of miR-21 levels; 5) increase of PKCδ expression. These results suggest that irradiation causes post-transcriptional regulation of myocardial Cx43 expression by miR-1 possibly through miR-21 and PKC signalling. We conclude that single dose of irradiation has the potential to enhance myocardial intercellular communication that might be beneficial for the heart that needs to be investigated in details in further studies.


Assuntos
Conexina 43/metabolismo , Traumatismos Cardíacos/metabolismo , MicroRNAs/metabolismo , Proteína Quinase C/metabolismo , Lesões por Radiação/metabolismo , Adaptação Fisiológica/efeitos da radiação , Animais , Coração/efeitos da radiação , Masculino , Miocárdio/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos da radiação
18.
J Electrocardiol ; 48(3): 434-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25732099

RESUMO

Defects in intercellular coupling in the heart play a key role in the initiation and persistence of malignant arrhythmias. Such disorders result from abnormal expression and distribution of connexins, the major constituents of cardiac gap junction channels. The alterations of myocardial connexin are well established as a consistent feature of both human and animal heart disease and aging. Following these facts, the modulation of connexin mediated intercellular coupling is suggested as a new antiarrhythmic approach. This review provides recent data supporting this concept. It can be challenging for the development of new antiarrhythmic drugs. Moreover, findings point out the implication of some endogenous compounds in protection from life-threatening arrhythmias via preservation of myocardial connexin.


Assuntos
Arritmias Cardíacas/prevenção & controle , Arritmias Cardíacas/fisiopatologia , Comunicação Celular , Conexinas/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Células Musculares/fisiologia , Animais , Humanos , Modelos Cardiovasculares , Células Musculares/citologia
19.
Biomolecules ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36830700

RESUMO

Prolonged population aging and unhealthy lifestyles contribute to the progressive prevalence of arterial hypertension. This is accompanied by low-grade inflammation and over time results in heart dysfunction and failure. Hypertension-induced myocardial structural and ion channel remodeling facilitates the development of both atrial and ventricular fibrillation, and these increase the risk of stroke and sudden death. Herein, we elucidate hypertension-induced impairment of "connexome" cardiomyocyte junctions. This complex ensures cell-to-cell adhesion and coupling for electrical and molecular signal propagation. Connexome dysfunction can be a key factor in promoting the occurrence of both cardiac arrhythmias and heart failure. However, the available literature indicates that arterial hypertension treatment can hamper myocardial structural remodeling, hypertrophy and/or fibrosis, and preserve connexome function. This suggests the pleiotropic effects of antihypertensive agents, including anti-inflammatory. Therefore, further research is required to identify specific molecular targets and pathways that will protect connexomes, and it is also necessary to develop new approaches to maintain heart function in patients suffering from primary or pulmonary arterial hypertension.


Assuntos
Insuficiência Cardíaca , Hipertensão , Humanos , Arritmias Cardíacas , Miocárdio , Insuficiência Cardíaca/complicações , Miócitos Cardíacos
20.
Sci Rep ; 13(1): 20923, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38017033

RESUMO

Heart failure (HF) is life-threatening disease due to electro-mechanical dysfunction associated with hemodynamic overload, while alterations of extracellular matrix (ECM) along with perturbed connexin-43 (Cx43) might be key factors involved. We aimed to explore a dual impact of pressure, and volume overload due to aorto-caval fistula (ACF) on Cx43 and ECM as well as effect of renin-angiotensin blockade. Hypertensive Ren-2 transgenic rats (TGR) and normotensive Hannover Sprague-Dawley rats (HSD) that underwent ACF were treated for 15-weeks with trandolapril or losartan. Blood serum and heart tissue samples of the right (RV) and left ventricles (LV) were used for analyses. ACF-HF increased RV, LV and lung mass in HSD and to lesser extent in TGR, while treatment attenuated it and normalized serum ANP, BNP-45 and TBARS. Cx43 protein and its ser368 variant along with PKCε were lower in TGR vs HSD and suppressed in both rat strains due to ACF but prevented more by trandolapril. Pro-hypertrophic PKCδ, collagen I and hydroxyproline were elevated in TGR and increased due to ACF in both rat strains. While SMAD2/3 and MMP2 levels were lower in TGR vs HSD and reduced due to ACF in both strains. Findings point out the strain-related differences in response to volume overload. Disorders of Cx43 and ECM signalling may contribute not only to HF but also to the formation of arrhythmogenic substrate. There is benefit of treatment with trandolapril and losartan indicating their pleiotropic anti-arrhythmic potential. It may provide novel input to therapy.


Assuntos
Fístula , Insuficiência Cardíaca , Hipertensão , Ratos , Animais , Ratos Transgênicos , Losartan/farmacologia , Renina , Conexina 43/genética , Ratos Sprague-Dawley , Pressão Sanguínea , Matriz Extracelular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA