Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542501

RESUMO

Increased signs of DNA damage have been associated to aging and neurodegenerative diseases. DNA damage repair mechanisms are tightly regulated and involve different pathways depending on cell types and proliferative vs. postmitotic states. Amongst them, fused in sarcoma (FUS) was reported to be involved in different pathways of single- and double-strand break repair, including an early recruitment to DNA damage. FUS is a ubiquitously expressed protein, but if mutated, leads to a more or less selective motor neurodegeneration, causing amyotrophic lateral sclerosis (ALS). Of note, ALS-causing mutation leads to impaired DNA damage repair. We thus asked whether FUS recruitment dynamics differ across different cell types putatively contributing to such cell-type-specific vulnerability. For this, we generated engineered human induced pluripotent stem cells carrying wild-type FUS-eGFP and analyzed different derivatives from these, combining a laser micro-irradiation technique and a workflow to analyze the real-time process of FUS at DNA damage sites. All cells showed FUS recruitment to DNA damage sites except for hiPSC, with only 70% of cells recruiting FUS. In-depth analysis of the kinetics of FUS recruitment at DNA damage sites revealed differences among cellular types in response to laser-irradiation-induced DNA damage. Our work suggests a cell-type-dependent recruitment behavior of FUS during the DNA damage response and repair procedure. The presented workflow might be a valuable tool for studying the proteins recruited at the DNA damage site in a real-time course.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Dano ao DNA , Mutação
2.
Cell Rep ; 42(2): 112025, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36696267

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder causing progressive loss of motor neurons. Mutations in Fused in sarcoma (FUS) leading to its cytoplasmic mislocalization cause a subset of ALS. Under stress, mutant FUS localizes to stress granules (SGs)-cytoplasmic condensates composed of RNA and various proteins. Aberrant dynamics of SGs is linked to the pathology of ALS. Here, using motor neurons (MNs) derived from human induced pluripotent stem cells, we show that, in mutant FUS, MN dynamics of SGs is disturbed. Additionally, heat-shock response (HSR) and integrated stress response (ISR) involved in the regulation of SGs are upregulated in mutant MNs. HSR activation correlates with the amount of cytoplasmic FUS mislocalization. While inhibition of SG formation, translation, or ISR does not influence survival of FUS ALS neurons, proteotoxicity that cannot be compensated with the activation of stress pathways is the main driver of neurodegeneration in early FUS ALS.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Humanos , Esclerose Lateral Amiotrófica/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Mutação , Citoplasma/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo
3.
Cells ; 12(10)2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37408187

RESUMO

Motoneurons are one of the most energy-demanding cell types and a primary target in Amyotrophic lateral sclerosis (ALS), a debilitating and lethal neurodegenerative disorder without currently available effective treatments. Disruption of mitochondrial ultrastructure, transport, and metabolism is a commonly reported phenotype in ALS models and can critically affect survival and the proper function of motor neurons. However, how changes in metabolic rates contribute to ALS progression is not fully understood yet. Here, we utilize hiPCS-derived motoneuron cultures and live imaging quantitative techniques to evaluate metabolic rates in fused in sarcoma (FUS)-ALS model cells. We show that differentiation and maturation of motoneurons are accompanied by an overall upregulation of mitochondrial components and a significant increase in metabolic rates that correspond to their high energy-demanding state. Detailed compartment-specific live measurements using a fluorescent ATP sensor and FLIM imaging show significantly lower levels of ATP in the somas of cells carrying FUS-ALS mutations. These changes lead to the increased vulnerability of diseased motoneurons to further metabolic challenges with mitochondrial inhibitors and could be due to the disruption of mitochondrial inner membrane integrity and an increase in its proton leakage. Furthermore, our measurements demonstrate heterogeneity between axonal and somatic compartments, with lower relative levels of ATP in axons. Our observations strongly support the hypothesis that mutated FUS impacts the metabolic states of motoneurons and makes them more susceptible to further neurodegenerative mechanisms.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Neurônios Motores/metabolismo , Mutação , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/farmacologia
4.
Cells ; 10(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359837

RESUMO

Induced pluripotent stem (iPS) cells constitute a perfect tool to study human embryo development processes such as myogenesis, thanks to their ability to differentiate into three germ layers. Currently, many protocols to obtain myogenic cells have been described in the literature. They differ in many aspects, such as media components, including signaling modulators, feeder layer constituents, and duration of culture. In our study, we compared three different myogenic differentiation protocols to verify, side by side, their efficiency. Protocol I was based on embryonic bodies differentiation induction, ITS addition, and selection with adhesion to collagen I type. Protocol II was based on strong myogenic induction at the embryonic bodies step with BIO, forskolin, and bFGF, whereas cells in Protocol III were cultured in monolayers in three special media, leading to WNT activation and TGF-ß and BMP signaling inhibition. Myogenic induction was confirmed by the hierarchical expression of myogenic regulatory factors MYF5, MYOD, MYF6 and MYOG, as well as the expression of myotubes markers MYH3 and MYH2, in each protocol. Our results revealed that Protocol III is the most efficient in obtaining myogenic cells. Furthermore, our results indicated that CD56 is not a specific marker for the evaluation of myogenic differentiation.


Assuntos
Técnicas de Cultura de Células , Meios de Cultura/farmacologia , Corpos Embrioides/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Colforsina/farmacologia , Colágeno Tipo I/farmacologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Indóis/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Insulina/farmacologia , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fator Regulador Miogênico 5/genética , Fator Regulador Miogênico 5/metabolismo , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Miogenina/genética , Miogenina/metabolismo , Oximas/farmacologia , Selênio/farmacologia , Transferrina/farmacologia
5.
Cell Death Dis ; 9(6): 643, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844345

RESUMO

Rhabdomyosarcoma (RMS) is a mesenchymal tumor of soft tissue in children that originates from a myogenic differentiation defect. Expression of SNAIL transcription factor is elevated in the alveolar subtype of RMS (ARMS), characterized by a low myogenic differentiation status and high aggressiveness. In RMS patients SNAIL level increases with higher stage. Moreover, SNAIL level negatively correlates with MYF5 expression. The differentiation of human ARMS cells diminishes SNAIL level. SNAIL silencing in ARMS cells inhibits proliferation and induces differentiation in vitro, and thereby completely abolishes the growth of human ARMS xenotransplants in vivo. SNAIL silencing induces myogenic differentiation by upregulation of myogenic factors and muscle-specific microRNAs, such as miR-206. SNAIL binds to the MYF5 promoter suppressing its expression. SNAIL displaces MYOD from E-box sequences (CANNTG) that are associated with genes expressed during differentiation and G/C rich in their central dinucleotides. SNAIL silencing allows the re-expression of MYF5 and canonical MYOD binding, promoting ARMS cell myogenic differentiation. In differentiating ARMS cells SNAIL forms repressive complex with histone deacetylates 1 and 2 (HDAC1/2) and regulates their expression. Accordingly, in human myoblasts SNAIL silencing induces differentiation by upregulation of myogenic factors. Our data clearly point to SNAIL as a key regulator of myogenic differentiation and a new promising target for future ARMS therapies.


Assuntos
Diferenciação Celular , Proteína MyoD/metabolismo , Fator Regulador Miogênico 5/metabolismo , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/patologia , Fatores de Transcrição da Família Snail/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , DNA de Neoplasias/metabolismo , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Histona Desacetilases/metabolismo , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular , Músculos/metabolismo , Músculos/patologia , Fenótipo , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Curr Drug Targets ; 18(1): 98-107, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26674534

RESUMO

MET is a tyrosine kinase receptor, which binds hepatocyte growth factor (HGF). It regulates many physiological processes and participates in the regulation of proliferation, differentiation and motility of various cells. It plays an important role in embryogenesis as well as in adult life. Aberrations within the regulatory pathways activated by MET can be one of the causes of tumor development. Recently novel important functions of MET signaling in tumor development have been described, such as maintenance of cancer stem cells or importance of endosomal localization of MET. Moreover, MET is considered as one of the important factors responsible for development of rhabdomyosarcoma (RMS), a soft tissue sarcoma related to myogenic lineage. Its origin remains debatable but it is suggested that it derives from defect in differentiation of the satellite cells or of the mesenchymal stem cells. In RMS MET downregulation induces differentiation of tumor cells and in consequence, metastatic potential of RMS cells is diminished. Therefore, blocking of MET may be clinically useful in novel differentiationbased therapies of RMS in future.


Assuntos
Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/metabolismo , Rabdomiossarcoma/tratamento farmacológico , Ensaios Clínicos como Assunto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Rabdomiossarcoma/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Oncotarget ; 6(31): 31378-98, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26384300

RESUMO

Rhabdomyosarcoma (RMS) is a soft tissue sarcoma, which may originate from impaired differentiation of mesenchymal stem cells (MSC). Expression of MET receptor is elevated in alveolar RMS subtype (ARMS) which is associated with worse prognosis, compared to embryonal RMS (ERMS). Forced differentiation of ARMS cells diminishes MET level and, as shown previously, MET silencing induces differentiation of ARMS. In ERMS cells introduction of TPR-MET oncogene leads to an uncontrolled overstimulation of the MET receptor downstream signaling pathways. In vivo, tumors formed by those cells in NOD-SCID mice display inhibited differentiation, enhanced proliferation, diminished apoptosis and increased infiltration of neutrophils. Consequently, tumors grow significantly faster and they display enhanced ability to metastasize to lungs and to vascularize due to elevated VEGF, MMP9 and miR-378 expression. In vitro, TPR-MET ERMS cells display enhanced migration, chemotaxis and invasion toward HGF and SDF-1. Introduction of TPR-MET into MSC increases survival and may induce expression of early myogenic factors depending on the genetic background, and it blocks terminal differentiation of skeletal myoblasts. To conclude, our results suggest that activation of MET signaling may cause defects in myogenic differentiation leading to rhabdomyosarcoma development and progression.


Assuntos
Diferenciação Celular , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/patologia , Neovascularização Patológica , Proteínas Proto-Oncogênicas c-met/metabolismo , Rabdomiossarcoma/patologia , Animais , Apoptose , Western Blotting , Células Cultivadas , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mioblastos/citologia , Mioblastos/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA