Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur Radiol ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030374

RESUMO

OBJECTIVES: The revised European Society of Musculoskeletal Radiology (ESSR) consensus guidelines on soft tissue tumor imaging represent an update of 2015 after technical advancements, further insights into specific entities, and revised World Health Organization (2020) and AJCC (2017) classifications. This second of three papers covers algorithms once histology is confirmed: (1) standardized whole-body staging, (2) special algorithms for non-malignant entities, and (3) multiplicity, genetic tumor syndromes, and pitfalls. MATERIALS AND METHODS: A validated Delphi method based on peer-reviewed literature was used to derive consensus among a panel of 46 specialized musculoskeletal radiologists from 12 European countries. Statements that had undergone interdisciplinary revision were scored online by the level of agreement (0 to 10) during two iterative rounds, that could result in 'group consensus', 'group agreement', or 'lack of agreement'. RESULTS: The three sections contain 24 statements with comments. Group consensus was reached in 95.8% and group agreement in 4.2%. For whole-body staging, pulmonary MDCT should be performed in all high-grade sarcomas. Whole-body MRI is preferred for staging bone metastasis, with [18F]FDG-PET/CT as an alternative modality in PET-avid tumors. Patients with alveolar soft part sarcoma, clear cell sarcoma, and angiosarcoma should be screened for brain metastases. Special algorithms are recommended for entities such as rhabdomyosarcoma, extraskeletal Ewing sarcoma, myxoid liposarcoma, and neurofibromatosis type 1 associated malignant peripheral nerve sheath tumors. Satisfaction of search should be avoided in potential multiplicity. CONCLUSION: Standardized whole-body staging includes pulmonary MDCT in all high-grade sarcomas; entity-dependent modifications and specific algorithms are recommended for sarcomas and non-malignant soft tissue tumors. CLINICAL RELEVANCE STATEMENT: These updated ESSR soft tissue tumor imaging guidelines aim to provide support in decision-making, helping to avoid common pitfalls, by providing general and entity-specific algorithms, techniques, and reporting recommendations for whole-body staging in sarcoma and non-malignant soft tissue tumors. KEY POINTS: An early, accurate, diagnosis is crucial for the prognosis of patients with soft tissue tumors. These updated guidelines provide best practice expert consensus for standardized imaging algorithms, techniques, and reporting. Standardization can improve the comparability examinations and provide databases for large data analysis.

2.
Hum Brain Mapp ; 44(3): 1209-1226, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36401844

RESUMO

Of the sources of noise affecting blood oxygen level-dependent functional magnetic resonance imaging (fMRI), respiration and cardiac fluctuations are responsible for the largest part of the variance, particularly at high and ultrahigh field. Existing approaches to removing physiological noise either use external recordings, which can be unwieldy and unreliable, or attempt to identify physiological noise from the magnitude fMRI data. Data-driven approaches are limited by sensitivity, temporal aliasing, and the need for user interaction. In the light of the sensitivity of the phase of the MR signal to local changes in the field stemming from physiological processes, we have developed an unsupervised physiological noise correction method using the information carried in the phase and the magnitude of echo-planar imaging data. Our technique, Physiological Regressor Estimation from Phase and mAgnItude, sub-tR (PREPAIR) derives time series signals sampled at the slice TR from both phase and magnitude images. It allows physiological noise to be captured without aliasing, and efficiently removes other sources of signal fluctuations not related to physiology, prior to regressor estimation. We demonstrate that the physiological signal time courses identified with PREPAIR agree well with those from external devices and retrieve challenging cardiac dynamics. The removal of physiological noise was as effective as that achieved with the most used approach based on external recordings, RETROICOR. In comparison with widely used recording-free physiological noise correction tools-PESTICA and FIX, both performed in unsupervised mode-PREPAIR removed significantly more respiratory and cardiac noise than PESTICA, and achieved a larger increase in temporal signal-to-noise-ratio at both 3 and 7 T.


Assuntos
Encéfalo , Respiração , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Razão Sinal-Ruído , Imageamento por Ressonância Magnética/métodos , Imagem Ecoplanar , Artefatos , Mapeamento Encefálico/métodos
3.
Eur Radiol ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062268

RESUMO

OBJECTIVES: Early, accurate diagnosis is crucial for the prognosis of patients with soft tissue sarcomas. To this end, standardization of imaging algorithms, technical requirements, and reporting is therefore a prerequisite. Since the first European Society of Musculoskeletal Radiology (ESSR) consensus in 2015, technical achievements, further insights into specific entities, and the revised WHO-classification (2020) and AJCC staging system (2017) made an update necessary. The guidelines are intended to support radiologists in their decision-making and contribute to interdisciplinary tumor board discussions. MATERIALS AND METHODS: A validated Delphi method based on peer-reviewed literature was used to derive consensus among a panel of 46 specialized musculoskeletal radiologists from 12 European countries. Statements were scored online by level of agreement (0 to 10) during two iterative rounds. Either "group consensus," "group agreement," or "lack of agreement" was achieved. RESULTS: Eight sections were defined that finally contained 145 statements with comments. Overall, group consensus was reached in 95.9%, and group agreement in 4.1%. This communication contains the first part consisting of the imaging algorithm for suspected soft tissue tumors, methods for local imaging, and the role of tumor centers. CONCLUSION: Ultrasound represents the initial triage imaging modality for accessible and small tumors. MRI is the modality of choice for the characterization and local staging of most soft tissue tumors. CT is indicated in special situations. In suspicious or likely malignant tumors, a specialist tumor center should be contacted for referral or teleradiologic second opinion. This should be done before performing a biopsy, without exception. CLINICAL RELEVANCE: The updated ESSR soft tissue tumor imaging guidelines aim to provide best practice expert consensus for standardized imaging, to support radiologists in their decision-making, and to improve examination comparability both in individual patients and in future studies on individualized strategies. KEY POINTS: • Ultrasound remains the best initial triage imaging modality for accessible and small suspected soft tissue tumors. • MRI is the modality of choice for the characterization and local staging of soft tissue tumors in most cases; CT is indicated in special situations. Suspicious or likely malignant tumors should undergo biopsy. • In patients with large, indeterminate or suspicious tumors, a tumor reference center should be contacted for referral or teleradiologic second opinion; this must be done before a biopsy.

4.
Eur Radiol ; 32(12): 8364-8375, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35737095

RESUMO

OBJECTIVES: The aim of this study was to assess the texture of repair tissue and tissue adjacent to the repair site after matrix-associated chondrocyte transplantation (MACT) of the knee using gray-level co-occurrence matrix (GLCM) texture analysis of T2 quantitative maps. METHODS: Twenty patients derived from the MRI sub-study of multicenter, single-arm phase III study underwent examination on a 3 T MR scanner, including a T2 mapping sequence 12 and 24 months after MACT. Changes between the time points in mean T2 values and 20 GLCM features were assessed for repair tissue, adjacent tissue, and reference cartilage. Differences in T2 values and selected GLCM features between the three cartilage sites at two time points were analyzed using linear mixed-effect models. RESULTS: A significant decrease in T2 values after MACT, between time points, was observed only in repair cartilage (p < 0.001). Models showed significant differences in GLCM features between repair tissue and reference cartilage, namely, autocorrelation (p < 0.001), correlation (p = 0.015), homogeneity (p = 0.002), contrast (p < 0.001), and difference entropy (p = 0.047). The effect of time was significant in a majority of models with regard to GLCM features (except autocorrelation) (p ≤ 0.001). Values in repair and adjacent tissue became similar to reference tissue over time. CONCLUSIONS: GLCM is a useful add-on to T2 mapping in the evaluation of knee cartilage after MACT by increasing the sensitivity to changes in cartilage structure. The results suggest that cartilage tissue adjacent to the repair site heals along with the cartilage implant. KEY POINTS: • GLCM is a useful add-on to T2 mapping in the evaluation of knee cartilage after MACT by increasing the sensitivity to changes in cartilage structure. • Repair and adjacent tissue became similar to reference tissue over time. • The results suggest that cartilage tissue adjacent to the repair site heals along with the cartilage implant.


Assuntos
Cartilagem Articular , Humanos , Cartilagem Articular/diagnóstico por imagem , Condrócitos , Imageamento por Ressonância Magnética/métodos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Joelho
5.
BMC Musculoskelet Disord ; 23(1): 925, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266679

RESUMO

OBJECTIVES: To determine the relaxation times of the sodium nucleus, and to investigate the repeatability of quantitative, in vivo TSC measurements using sodium magnetic resonance imaging (23Na-MRI) in human skeletal muscle and explore the discriminatory value of the method by comparing TSCs between healthy subjects and patients with Addison's disease. MATERIALS AND METHODS: In this prospective study, ten healthy subjects and five patients with Addison's disease were involved. 23Na-MRI data sets were acquired using a density-adapted, three-dimensional radial projection reconstruction pulse sequence (DA-3DPR) with a modification for the relaxation times measurements. Differences in TSC between muscle groups and between healthy participants were analysed using a nonparametric Friedman ANOVA test. An interclass correlation coefficient (ICC) was used as the repeatability index. Wilcoxon rank sum test was used for evaluation of differences in TSC between study participants. RESULTS: The mean T1 in the gastrocnemius medialis (GM), the tibialis anterior (TA), and the soleus (S) was 25.9 ± 2.0 ms, 27.6 ± 2.0 ms, and 28.2 ± 2.0 ms, respectively. The mean short component of T2*, T2*short were GM: 3.6 ± 2.0 ms; TA: 3.2 ± 0.5 ms; and S: 3.0 ± 1.0 ms, and the mean long component of T2*, T2*long, were GM: 12.9 ± 0.9 ms; TA: 12.8 ± 0.7 ms; and S: 12.9 ± 2.0 ms, respectively. In healthy volunteers, TSC values in the GM were 19.9 ±0.1  mmol/L, 13.8 ±0.2 mmol/L in TA, and 12.6 ± 0.2 mmol/L in S, and were significantly different (p = 0.0005). The ICCs for GM, TA and S were 0.784, 0.818, 0.807, respectively. In patients with Addison's disease, TSC in GC, TA, and S were 10.2 ± 1.0 mmol/L, 8.4 ± 0.6 mmol/L, and 7.2 ± 0.1 mmol/L, respectively. CONCLUSIONS: TSC quantification in a healthy subject's calf at 7.0 T is reliable; the technique is able to distinguish sodium level differences between muscles and between healthy subjects and Addison's disease patients.


Assuntos
Doença de Addison , Sódio , Humanos , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/diagnóstico por imagem , Estudos Prospectivos , Sódio/análise
6.
J Magn Reson Imaging ; 54(1): 58-75, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32851736

RESUMO

Sodium magnetic resonance imaging (23 Na-MRI) is a highly promising imaging modality that offers the possibility to noninvasively quantify sodium content in the tissue, one of the most relevant parameters for biochemical investigations. Despite its great potential, due to the intrinsically low signal-to-noise ratio (SNR) of sodium imaging generated by low in vivo sodium concentrations, low gyromagnetic ratio, and substantially shorter relaxation times than for proton (1 H) imaging, 23 Na-MRI is extremely challenging. In this article, we aim to provide a comprehensive overview of the literature that has been published in the last 10-15 years and which has demonstrated different technical designs for a range of 23 Na-MRI methods applicable for disease diagnoses and treatment efficacy evaluations. Currently, a wider use of 3.0T and 7.0T systems provide imaging with the expected increase in SNR and, consequently, an increased image resolution and a reduced scanning time. A great interest in translational research has enlarged the field of sodium MRI applications to almost all parts of the body: articular cartilage tendons, spine, heart, breast, muscle, kidney, and brain, etc., and several pathological conditions, such as tumors, neurological and degenerative diseases, and others. The quantitative parameter, tissue sodium concentration, which reflects changes in intracellular sodium concentration, extracellular sodium concentration, and intra-/extracellular volume fractions is becoming acknowledged as a reliable biomarker. Although the great potential of this technique is evident, there must be steady technical development for 23 Na-MRI to become a standard imaging tool. The future role of sodium imaging is not to be considered as an alternative to 1 H MRI, but to provide early, diagnostically valuable information about altered metabolism or tissue function associated with disease genesis and progression. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Cartilagem Articular , Sódio , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neuroimagem
7.
Acta Radiol ; 62(1): 51-57, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32290676

RESUMO

BACKGROUND: Many factors influence the increase in signal intensity (SI) provided by magnetic resonance imaging (MRI) contrast media. PURPOSE: To assess the impact of different gadolinium concentrations and dilutions of three macrocyclic gadolinium-based contrast agents (GBCA) on SI. MATERIAL AND METHODS: This phantom study investigated gadobutrol, gadoteridol, and gadoterate in human plasma of a healthy donor pool at 37 °C. Different molar concentrations served to mimic conditions typically relevant for steady-state imaging; different dilutions served to mimic influence on first-pass bolus imaging. For SI measurement at 1.5T and 3T, we used two Magnetom Scanners (Siemens), applying the T1-weighted sequences Flash 2D/3D and VIBE. Regions of interest were placed on the central slice of the test vials. RESULTS: In the concentration series, gadobutrol showed the highest SI of all three GBCAs up to 2 mM, followed by gadoteridol and gadoterate. No major differences were seen between 1.5T and 3T. In the dilution series, gadobutrol showed the highest SI of all three GBCAs up to 10 mL/L. The highest effect was recorded with Flash 3D and VIBE at 3T. CONCLUSION: SIs measured in phantoms using three macrocyclic GBCAs strongly depend on their relaxivity and on the local concentration. The latter can be influenced-when comparing dilutions-by their initial concentration in their formulation. Furthermore, the pulse sequences and the chosen parameters have essential influence. At steady-state concentrations (≤2 mM) and first-pass bolus dilutions (up to 10 ml/L), gadobutrol showed highest SIs, followed by gadoterate and gadoteridol.


Assuntos
Meios de Contraste , Gadolínio , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Plasma/diagnóstico por imagem , Humanos , Imagens de Fantasmas
8.
Semin Musculoskelet Radiol ; 24(6): 627-644, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33307581

RESUMO

Soft tissue sarcomas encompass multiple entities with differing recurrence rates and follow-up intervals. The detection of recurrences and their differentiation from post-therapeutic changes is therefore complex, with a central role for the clinical radiologist. This article describes approved recommendations. Prerequisite is a precise knowledge of the current clinical management and surgical techniques. We review recurrence rates and treatment modalities. An adequate imaging technique is paramount, and comparison with previous imaging is highly recommended. We describe time-dependent therapy-related complications on magnetic resonance imaging compared with the spectrum of regular post-therapeutic changes. Early complications such as seromas, hematomas, and infections, late complications such as edema and fibrosis, and inflammatory pseudotumors are elucidated. The appearance of recurrences and radiation-associated sarcomas is contrasted with these changes. This systematic approach in follow-up imaging of soft tissue sarcoma patients will facilitate the differentiation of post-therapeutic changes from recurrences.


Assuntos
Sarcoma/diagnóstico por imagem , Sarcoma/terapia , Assistência ao Convalescente , Diagnóstico Diferencial , Humanos , Imageamento por Ressonância Magnética , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/terapia , Complicações Pós-Operatórias/diagnóstico por imagem , Lesões por Radiação/diagnóstico por imagem
9.
Knee Surg Sports Traumatol Arthrosc ; 27(1): 130-136, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30008057

RESUMO

PURPOSE: In this prospective, double-center cohort study, we aim to assess how the anterior cruciate ligament (ACL) signal intensity on magnetic resonance imaging (MRI) potentially varies between a group of patients with anatomic ACL reconstruction using autogenous hamstring grafts 6 months postoperatively and a healthy ACL control group, and how MRI-based graft signal intensity is related to knee laxity. METHODS: Sixty-two consecutive patients who underwent ACL reconstruction using quadrupled hamstring tendon autograft were prospectively invited to participate in this study, and they were evaluated with MRI after 6 months of follow-up. 50 patients with an MRI of their healthy ACL (Clinica Luganese, Lugano, Switzerland) and 12 patients of their contralateral healthy knee (Department of Orthopaedic and Trauma Surgery, Medical University of Vienna, Austria) served as the control group. To evaluate graft maturity, the signal-to-noise quotient (SNQ) was measured in three regions of interest (ROIs) of the proximal, mid-substance and distal ACL graft and the healthy ACL. KT-1000 findings were obtained 6 months postoperatively in the ACL reconstruction group. Statistical analysis was independently performed to outline the differences in the two groups regarding ACL intensity and the correlation between SNQ and KT-1000 values. RESULTS: There was a significant difference in the mean SNQ between the reconstructed ACL grafts and the healthy ACLs in the proximal and mid-substance regions (p = 0.001 and p = 0.004). The distal region of the reconstructed ACL showed a mean SNQ similar to the native ACL (n.s). Patients with a KT-1000 between 0 and 1 mm showed a mean SNQ of 0.1; however, a poor correlation was found between the mean SNQ and KT-1000 findings, probably due to the small sample size of patients with higher laxity. CONCLUSION: After 6 months of follow-up, hamstring tendon autografts for anatomic ACL reconstruction do not show equal MRI signal intensity compared to a healthy ACL and should therefore be considered immature or at least not completely healed even if clinical laxity measurement provides good results. However, in the case of a competitive athlete, who is clinically stable and wants to return to sports at 6 months, performing an MRI to confirm the stage of graft healing might be an option. LEVEL OF EVIDENCE: Prospective, comparative study II.


Assuntos
Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Tendões dos Músculos Isquiotibiais/transplante , Cicatrização/fisiologia , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Áustria , Feminino , Tendões dos Músculos Isquiotibiais/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Estudos Prospectivos , Transplante Autólogo
10.
NMR Biomed ; 29(2): 206-15, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25810325

RESUMO

The growing need for early diagnosis and higher specificity than that which can be achieved with morphological MRI is a driving force in the application of methods capable of probing the biochemical composition of cartilage tissue, such as sodium imaging. Unlike morphological imaging, sodium MRI is sensitive to even small changes in cartilage glycosaminoglycan content, which plays a key role in cartilage homeostasis. Recent advances in high- and ultrahigh-field MR systems, gradient technology, phase-array radiofrequency coils, parallel imaging approaches, MRI acquisition strategies and post-processing developments have resulted in many clinical in vivo sodium MRI studies of cartilage, even at 3 T. Sodium MRI has great promise as a non-invasive tool for cartilage evaluation. However, further hardware and software improvements are necessary to complete the translation of sodium MRI into a clinically feasible method for 3-T systems. This review is divided into three parts: (i) cartilage composition, pathology and treatment; (ii) sodium MRI; and (iii) clinical sodium MRI studies of cartilage with a focus on the evaluation of cartilage repair tissue and osteoarthritis.


Assuntos
Cartilagem Articular/patologia , Imageamento por Ressonância Magnética/métodos , Osteoartrite/diagnóstico , Sódio/metabolismo , Cicatrização , Animais , Humanos , Osteoartrite/patologia
11.
NMR Biomed ; 29(9): 1316-34, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-25762432

RESUMO

Presently, three major MR vendors provide commercial 7-T units for clinical research under ethical permission, with the number of operating 7-T systems having increased to over 50. This rapid increase indicates the growing interest in ultrahigh-field MRI because of improved clinical results with regard to morphological as well as functional and metabolic capabilities. As the signal-to-noise ratio scales linearly with the field strength (B0 ) of the scanner, the most obvious application at 7 T is to obtain higher spatial resolution in the brain, musculoskeletal system and breast. Of specific clinical interest for neuro-applications is the cerebral cortex at 7 T, for the detection of changes in cortical structure as a sign of early dementia, as well as for the visualization of cortical microinfarcts and cortical plaques in multiple sclerosis. In the imaging of the hippocampus, even subfields of the internal hippocampal anatomy and pathology can be visualized with excellent resolution. The dynamic and static blood oxygenation level-dependent contrast increases linearly with the field strength, which significantly improves the pre-surgical evaluation of eloquent areas before tumor removal. Using susceptibility-weighted imaging, the plaque-vessel relationship and iron accumulation in multiple sclerosis can be visualized for the first time. Multi-nuclear clinical applications, such as sodium imaging for the evaluation of repair tissue quality after cartilage transplantation and (31) P spectroscopy for the differentiation between non-alcoholic benign liver disease and potentially progressive steatohepatitis, are only possible at ultrahigh fields. Although neuro- and musculoskeletal imaging have already demonstrated the clinical superiority of ultrahigh fields, whole-body clinical applications at 7 T are still limited, mainly because of the lack of suitable coils. The purpose of this article was therefore to review the clinical studies that have been performed thus far at 7 T, compared with 3 T, as well as those studies performed at 7 T that cannot be routinely performed at 3 T. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Imagem Molecular/métodos , Neuroimagem/métodos , Animais , Medicina Baseada em Evidências , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Campos Magnéticos , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Eur Radiol ; 26(6): 1905-12, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26334512

RESUMO

OBJECTIVES: To assess the clinical relevance of T2 relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T2-mapping. METHODS: Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T2 mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T2 values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. RESULTS: The mean quantitative T2 values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). CONCLUSIONS: 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B1 and B0 changes. KEY POINTS: • 3D-TESS T 2 mapping provides clinically comparable results to CPMG in shorter scan-time. • Clinical and investigational studies may benefit from high temporal resolution of 3D-TESS. • 3D-TESS T 2 values are able to differentiate between healthy and damaged cartilage.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Imagem Ecoplanar/métodos , Articulação do Joelho/diagnóstico por imagem , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Estudos Prospectivos , Reprodutibilidade dos Testes
13.
Radiology ; 275(3): 763-71, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25654669

RESUMO

PURPOSE: To determine if quantitative magnetic resonance (MR) imaging techniques (sodium MR imaging, glycosaminoglycan [GAG] chemical exchange saturation transfer [CEST], and T2* mapping) could be used as potential markers for biochemical changes in the Achilles tendon induced by ciprofloxacin intake. MATERIALS AND METHODS: The ethics committee of the Medical University of Vienna approved the protocol (number 1225/2012), and all patients gave written informed consent. Fourteen ankles from seven men (mean age, 32 years ± 12 [standard deviation]) were included in the study. All patients underwent 7-T MR imaging examinations of the Achilles tendon at baseline and 10 days and 5 months after ciprofloxacin intake. Sodium signal and T2* maps were acquired with the variable echo-time sequence and the GAG CEST values were acquired with a three-dimensional radiofrequency spoiled gradient-recalled-echo sequence. RESULTS: The mean sodium signal was significantly decreased by 25% in the whole tendon (from baseline to 10 days after ciprofloxacin intake, 130 arbitrary units [au] ± 8 to 98 au ± 5, respectively; P = .023) and returned to baseline after 5 months (116 au ± 10), as observed also at the tendon insertion (baseline, 10 days after ciprofloxacin intake, and 5 months after ciprofloxacin intake, 134 au ± 8, 105 au ± 5, and 119 au ± 9, respectively; P = .034). The mean GAG CEST value in the whole tendon was parallel to the sodium signal with a decrease from baseline to 10 days after ciprofloxacin intake, 4.74% ± 0.75 to 4.50% ± 0.23, respectively (P = .028) and an increase at 5 months after ciprofloxacin intake to 4.88% ± 1.02. CONCLUSION: In conclusion, this study demonstrates a ciprofloxacin-induced reversible reduction of the normalized sodium MR imaging signal and the GAG CEST effect in the Achilles tendon of healthy volunteers. Changes in sodium MR imaging and GAG CEST in men may reflect a decrease of GAG content in the Achilles tendon after ciprofloxacin intake.


Assuntos
Tendão do Calcâneo/efeitos dos fármacos , Tendão do Calcâneo/metabolismo , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Glicosaminoglicanos/metabolismo , Imageamento por Ressonância Magnética/métodos , Tendão do Calcâneo/química , Adulto , Glicosaminoglicanos/análise , Humanos , Masculino , Estudos Prospectivos
14.
Eur Radiol ; 25(7): 2041-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25577522

RESUMO

OBJECTIVES: To test the feasibility and accuracy of MR-guided soft tissue tumour biopsy at 3T, using the dynamic contrast-enhanced (DCE) information from staging MRI for intralesional targeting. METHODS: After obtaining written informed consent for this institutional review board-approved study, 53 patients with suspected soft tissue tumours prospectively underwent preoperative staging MRI at 3T, including DCE, and subsequent MR-guided core needle biopsy. In 44/53 cases, DCE was heterogeneous and was used for intralesional biopsy targeting. Surgical, whole-specimen histology was used as the gold standard in 43/44 patients and revealed 42 soft tissue tumours (24 men; 18 women; mean age, 52 years; range, 19 - 84). RESULTS: Final surgical histology revealed eight benign lesions, six tumours of intermediate dignity, and 28 malignancies. All malignancies had shown heterogeneous DCE. The diagnostic yield of the biopsies was 100% (42/42). Histological accuracy rates of biopsy were 100% in predicting the dignity (42/42; 95% CI [0.916 - 1.000]), 95.2% for the tissue-specific entity (40/42; 95% CI [0.847 - 0.987]), and 90.5% for the tumour grade (38/42; 95% CI [0.779 - 0.962]). CONCLUSIONS: Our preliminary study indicates that biopsy of soft tissue tumours can be performed accurately and safely with DCE targeted MR-guidance at 3T, using a combined staging/biopsy MRI protocol. KEY POINTS: • MR-guided soft tissue tumour biopsy using DCE for intralesional targeting is feasible. • Targeting by staging-MRI allows reliable planning of the biopsy approach. • The method seems accurate and safe as a combined staging/biopsy procedure in outpatients. • DCE-targeted biopsy seems useful in challenging large and heterogeneous tumours.


Assuntos
Neoplasias de Tecidos Moles/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia por Agulha/métodos , Meios de Contraste , Estudos de Viabilidade , Feminino , Humanos , Biópsia Guiada por Imagem , Imageamento por Ressonância Magnética/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Masculino , Meglumina/análogos & derivados , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Compostos Organometálicos , Cuidados Pré-Operatórios , Estudos Prospectivos , Neoplasias de Tecidos Moles/cirurgia , Adulto Jovem
16.
Magn Reson Med ; 71(3): 1015-23, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23606167

RESUMO

PURPOSE: The goal of this study was to differentiate between normal, degenerative meniscus, and meniscal tears using monoexponentially and biexponentially calculated T2*. Meniscal disease, characterized by an altered collagen fiber matrix, might be detectable in vivo using quantitative T2* mapping. METHODS: A 3D Cartesian spoiled gradient echo technique was adapted to enable the use of a variable echo time approach in combination with a highly asymmetric readout. T2* was calculated monoexponentially and biexponentially using three- and five-parametric non-linear fits, respectively. RESULTS: From a total of 68 evaluated menisci, 48 were normal, 12 were degenerated, and eight had tears. Mean values for the short (T2*s) and long (T2*l) T2* components were as follows: in normal menisci, 0.82 ± 0.38/15.0 ± 5.4 ms, respectively; in degenerated menisci, 1.29 ± 0.53/19.97 ± 5.59 ms, respectively; and, in meniscal tears, 2.05 ± 0.73 and 26.83 ± 7.72 ms, respectively. Biexponentially fitted T2* demonstrated a greater ability to distinguish normal and degenerated menisci using receiver operating characteristic (ROC) analysis (higher area under curve as well as higher specificity and sensitivity). CONCLUSION: This study suggests that biexponential fitting, used for T2* calculation in the menisci, provides better results compared to monoexponential fitting. Observed changes in T2* result from the matrix reorganization in degenerative processes in the menisci, which affects the collagen fiber orientation, as well as content.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Traumatismos do Joelho/patologia , Meniscos Tibiais/patologia , Osteoartrite do Joelho/patologia , Lesões do Menisco Tibial , Adulto , Diagnóstico Diferencial , Feminino , Humanos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Clin Oral Investig ; 18(7): 1865-71, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24306680

RESUMO

OBJECTIVES: Symptoms of temporomandibular joint (TMJ) dysfunction can seriously compromise patients' quality of life. The aim of our study was to use magnetic resonance imaging (MRI) T2 mapping of the articular disc to determine whether T2 mapping of the TMJ disc is feasible in routine clinical imaging and to assess the normal T2 relaxation time distribution within the TMJ. METHODS: Included were ten asymptomatic volunteers without pain, any mouth-opening limitations, or any clicking phenomena. MR imaging was performed on a 3-T MR scanner using a flexible, dedicated, eight-channel multielement coil. T2 mapping was performed in the oblique sagittal plane. The regions of interest (ROIs) for the T2 relaxation time maps of the disc were selected manually. RESULTS: The mean values for ROIs ranged between 22.4 and 28.8 ms, and the mean for all ROIs was 26.0 ± 5.0 ms. Intraclass correlation (ICC) for interobserver variability was 0.698, and ICC for intraobserver variability was 0.861. There was no statistically significant difference between raters (p = 0.091) or sides (p = 0.810). CONCLUSION: The T2 mapping technique enables ultrastructural analysis of the composition of TMJ disc. This biochemical technique is feasible in vivo, as shown in our study, when a high-field (3 T) MR and a dedicated TMJ coil are used. CLINICAL RELEVANCE: T2 mapping as a biochemical technique, together with morphological MRI, may help to gain more insights into the physiology and into the pathophysiology of the articular disc in the TMJ noninvasively and in vivo.


Assuntos
Imageamento por Ressonância Magnética/métodos , Disco da Articulação Temporomandibular/anatomia & histologia , Articulação Temporomandibular/anatomia & histologia , Adulto , Estudos de Viabilidade , Feminino , Voluntários Saudáveis , Humanos , Masculino , Articulação Temporomandibular/patologia , Disco da Articulação Temporomandibular/patologia
18.
Eur Radiol ; 23(10): 2814-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23760303

RESUMO

OBJECTIVE: To compare mono- and bi-exponential T2 analysis in healthy and degenerated Achilles tendons using a recently introduced magnetic resonance variable-echo-time sequence (vTE) for T2 mapping. METHODS: Ten volunteers and ten patients were included in the study. A variable-echo-time sequence was used with 20 echo times. Images were post-processed with both techniques, mono- and bi-exponential [T2 m, short T2 component (T2 s) and long T2 component (T2 l)]. The number of mono- and bi-exponentially decaying pixels in each region of interest was expressed as a ratio (B/M). Patients were clinically assessed with the Achilles Tendon Rupture Score (ATRS), and these values were correlated with the T2 values. RESULTS: The means for both T2 m and T2 s were statistically significantly different between patients and volunteers; however, for T2 s, the P value was lower. In patients, the Pearson correlation coefficient between ATRS and T2 s was -0.816 (P = 0.007). CONCLUSION: The proposed variable-echo-time sequence can be successfully used as an alternative method to UTE sequences with some added benefits, such as a short imaging time along with relatively high resolution and minimised blurring artefacts, and minimised susceptibility artefacts and chemical shift artefacts. Bi-exponential T2 calculation is superior to mono-exponential in terms of statistical significance for the diagnosis of Achilles tendinopathy. KEY POINTS: • Magnetic resonance imaging offers new insight into healthy and diseased Achilles tendons • Bi-exponential T2 calculation in Achilles tendons is more beneficial than mono-exponential • A short T2 component correlates strongly with clinical score • Variable echo time sequences successfully used instead of ultrashort echo time sequences.


Assuntos
Tendão do Calcâneo/patologia , Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tendinopatia/patologia , Adulto , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Radiologie (Heidelb) ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37584681

RESUMO

BACKGROUND: Currently, two major magnetic resonance (MR) vendors provide commercial 7­T scanners that are approved by the Food and Drug Administration (FDA) for clinical application. There is growing interest in ultrahigh-field MRI because of the improved clinical results in terms of morphological detail, as well as functional and metabolic imaging capabilities. MATERIALS AND METHODS: The 7­T systems benefit from a higher signal-to-noise ratio, which scales supralinearly with field strength, a supralinear increase in the blood oxygenation level dependent (BOLD) contrast for functional MRI and susceptibility weighted imaging (SWI), and the chemical shift increases linearly with field strength with consequently higher spectral resolution. RESULTS: In multiple sclerosis (MS), 7­T imaging enables visualization of cortical lesions, the central vein sign, and paramagnetic rim lesions, which may be beneficial for the differential diagnosis between MS and other neuroinflammatory diseases in challenging and inconclusive clinical presentations and are seen as promising biomarkers for prognosis and treatment monitoring. The recent development of high-resolution proton MR spectroscopic imaging in clinically reasonable scan times has provided new insights into tumor metabolism and tumor grading as well as into early metabolic changes that may precede inflammatory processes in MS. This technique also improves the detection of epileptogenic foci in the brain. Multi-nuclear clinical applications, such as sodium imaging, have shown great potential for the evaluation of repair tissue quality after cartilage transplantation and in the monitoring of newly developed cartilage regenerative drugs for osteoarthritis. CONCLUSION: For special clinical applications, such as SWI in MS, MR spectroscopic imaging in tumors, MS and epilepsy, and sodium imaging in cartilage repair, 7T may become a new standard.

20.
Radiology ; 265(2): 555-64, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22923712

RESUMO

PURPOSE: To compare sodium imaging of lumbar intervertebral disks in asymptomatic volunteers at 7-T magnetic resonance (MR) imaging with quantitative T2 mapping and morphologic scoring at 3 T. MATERIALS AND METHODS: Following ethical board approval and informed consent, the L2-3 to L5-S1 disks were examined in 10 asymptomatic volunteers (nine men, one woman; mean age, 30 years; range, 23-43 years). At 7 T, normalized sodium signal-to-noise ratios were calculated, by using region-of-interest analysis. At 3 T, T2 mapping was performed with a multiecho spin-echo sequence (repetition time msec/echo times msec, 1500/24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156). T2 values were calculated over the nucleus, with a pixelwise, monoexponential nonnegative least-squares-fit analysis. Morphologic grading according to a modified Pfirrmann score was assessed independently by three experienced musculoskeletal radiologists, and Pearson correlation analysis of the covariates was performed. RESULTS: The mean normalized sodium signal intensity was 275.5±115.4 (standard deviation). The T2 mapping showed a mean value of 89.8 msec±19.34. The median modified Pfirrmann score was 2b (90% had score≤3c). The Pearson correlation coefficient showed a cubic function between sodium imaging and the modified Pfirrmann score, a moderate inverse correlation between T2 mapping and the modified Pfirrmann score (r=-0.62), and no correlation between sodium imaging and T2 mapping (r=0.06). CONCLUSION: The results suggest that MR imaging of the intervertebral disk, using sodium imaging and T2 mapping, can help characterize different component changes and that both of these methods are to some degree related to the Pfirrmann score.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Disco Intervertebral/anatomia & histologia , Vértebras Lombares/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estatística como Assunto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA