RESUMO
OBJECTIVE: Structural epilepsies can manifest months or years after the occurrence of an initial epileptogenic insult, making them amenable for secondary prevention. However, development of preventive treatments has been challenged by a lack of biomarkers for identifying the subset of individuals with the highest risk of epilepsy after the epileptogenic insult. METHODS: Four different rat models of epileptogenesis were investigated to identify differentially expressed circulating microRNA (miRNA) and isomiR profiles as biomarkers for epileptogenesis. Plasma samples were collected on day 2 and day 9 during the latency period from animals that did or did not develop epilepsy during long-term video-electroencephalographic monitoring. miRNAs and isomiRs were identified and measured in an unsupervised manner, using a genome-wide small RNA sequencing platform. Receiver operating characteristic analysis was performed to determine the performance of putative biomarkers. RESULTS: Two days after an epileptogenic insult, alterations in the levels of several plasma miRNAs and isomiRs predicted epileptogenesis in a model-specific manner. One miRNA, miR-3085, showed good sensitivity (but low specificity) as a prognostic biomarker for epileptogenesis in all four models (area under the curve = .729, sensitivity = 83%, specificity = 64%, p < .05). SIGNIFICANCE: Identified plasma miRNAs and isomiRs are mostly etiology-specific rather than common prognostic biomarkers of epileptogenesis. These data imply that in preclinical and clinical studies, it may be necessary to identify specific biomarkers for different epilepsy etiologies. Importantly, circulating miRNAs like miR-3085 with high negative predictive value for epileptogenesis in different etiologies could be useful candidates for initial screening purposes of epileptogenesis risk.
RESUMO
Epilepsy frequently develops as a result of brain insult; however, there are no tools allowing to predict which patients suffering from trauma will eventually develop epilepsy. microRNAs are interesting candidates for biomarkers, as several of them have been described to change their levels in the brains, and in the plasma of epileptic subjects. This study was conducted to evaluate the usefulness of plasma miRNAs as epileptogenesis/epilepsy biomarkers. In our studies, we used a rat model of temporal lobe epilepsy. An epileptogenic insult was status epilepticus evoked by stimulation of the left lateral nucleus of the amygdala. Next, animals were continuously video and EEG monitored for 3 months. Blood was collected at 14, 30, 60, and 90 days after stimulation. Blood plasma was separated and miRNA levels were analyzed. We compared miRNA levels between sham-operated and stimulated animals, and between animals with high and low numbers of seizures. We propose three miRNAs that could be biomarkers of epilepsy: miR-671, miR-9a-3p and miR-7a-5p. According to us, miR-206-5p is a potential biomarker of epileptogenesis, and miR-221-3p is a potential biomarker of epilepsy severity. We think that these five miRNAs can be considered in the future as potential treatment targets.
Assuntos
MicroRNA Circulante , Epilepsia , MicroRNAs , Humanos , Animais , Ratos , MicroRNAs/genética , Epilepsia/diagnóstico , Epilepsia/genética , Plasma , BiomarcadoresRESUMO
To promote functional recovery after CNS injuries, it is crucial to develop strategies that enhance both neuronal survival and regeneration. Here, we report that caspase-6 is upregulated in injured retinal ganglion cells and that its inhibition promotes both survival and regeneration in these adult CNS neurons. Treatment of rat retinal whole mounts with Z-VEID-FMK, a selective inhibitor of caspase-6, enhanced ganglion cell survival. Moreover, retinal explants treated with this drug extended neurites on myelin. We also show that caspase-6 inhibition resulted in improved ganglion cell survival and robust axonal regeneration following optic nerve injury in adult rats. The effects of Z-VEID-FMK were similar to other caspase inhibitory peptides including Z-LEHD-FMK and Z-VAD-FMK. In searching for downstream effectors for caspase-6, we identified caspase-8, whose expression pattern resembled that of caspase-6 in the injured eye. We then showed that caspase-8 is activated downstream of caspase-6 in the injured adult retina. Furthermore, we investigated the role of caspase-8 in RGC apoptosis and regenerative failure both in vitro and in vivo. We observed that caspase-8 inhibition by Z-IETD-FMK promoted survival and regeneration to an extent similar to that obtained with caspase-6 inhibition. Our results indicate that caspase-6 and caspase-8 are components of a cellular pathway that prevents neuronal survival and regeneration in the adult mammalian CNS.
Assuntos
Apoptose/fisiologia , Caspase 6/metabolismo , Caspase 8/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/patologia , Células Ganglionares da Retina/enzimologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Axônios/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Toxina da Cólera , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Proteína GAP-43/metabolismo , Injeções Intraoculares/métodos , Masculino , Bainha de Mielina/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Degeneração Retrógrada/prevenção & controle , EstilbamidinasRESUMO
The present study performed a detailed analysis of behavior in a rat model of epilepsy using both established and novel methodologies to identify behavioral impairments that may differentiate between animals with a short versus long latency to spontaneous seizures and animals with a low versus high number of seizures. Temporal lobe epilepsy was induced by electrical stimulation of the amygdala. Rats were stimulated for 25 min with 100-ms trains of 1-ms biphasic square-wave pluses that were delivered every 0.5 s. Electroencephalographic recordings were performed to classify rats into groups with a short latency (< 20 days, n = 7) and long latency (> 20 days, n = 8) to the first spontaneous seizure and into groups with a low number of seizures (62 ± 64.5, n = 8) and high number of seizures (456 ± 185, n = 7). To examine behavioral impairments, we applied the following behavioral tests during early and late stages of epilepsy: behavioral hyperexcitability, open field, novel object exploration, elevated plus maze, and Morris water maze. No differences in stress levels (e.g., touch response in the behavioral hyperexcitability test), activity (e.g., number of entries into the open arms of the elevated plus maze), or learning (e.g., latency to find the platform in the Morris water maze test during training days) were observed between animals with a short versus long latency to develop spontaneous seizures or between animals with a low versus high number of seizures. However, we found a higher motor activity measured by higher number of entries into the closed arms of the elevated plus maze at week 26 post-stimulation in animals with a high number of seizures compared with animals with a low number of seizures. The analysis of the Morris water maze data categorized the strategies that the animals used to locate the platform showing that the intensity of epilepsy and duration of epileptogenesis influenced swimming strategies. These findings indicate that behavioral impairments were relatively mild in the present model, but some learning strategies may be useful biomarkers in preclinical studies.
Assuntos
Comportamento Animal , Epilepsia do Lobo Temporal/psicologia , Animais , Biomarcadores , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia do Lobo Temporal/etiologia , Comportamento Exploratório , Masculino , Teste do Labirinto Aquático de Morris , Teste de Campo Aberto , Fenótipo , Ratos , Ratos Sprague-Dawley , Convulsões/etiologiaRESUMO
Although, astrocytes are more resistant than neurons to ischemic injury, astrocyte death has been demonstrated in animal models of brain ischemia. Astrocytes death after ischemia/reperfusion may strongly affect neuronal survival because of the absence of their trophic and metabolic support to neurons, and astrocytic glutamate uptake. Early signals involved in astrocytes death are poorly understood. We demonstrated enhanced and mostly cytoplasmic activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) during glutamate-induced apoptosis of cultured astrocytes. Treatment with UO126, inhibitor of MEK1, threo-beta-benzyloxyaspartic acid, glutamate transporter inhibitor, and FK506, a cytoprotective drug prevented ERK activation and glutamate-induced apoptosis. Over-expression of ERK dual specificity phosphatases 5 and 6 reduced apoptosis in transfected astrocytes. Prolonged ERK1/2 activation was observed in ischemic brain: in the nucleus and cytoplasm of astrocytes in the cerebral cortex, and exclusively in the cytoplasm of astrocytes in the striatum. Global gene expression profiling in the cortex revealed that FK506 blocks middle cerebral artery occlusion-induced expression of numerous genes associated with ERK signaling pathway and apoptosis. The results demonstrate a pro-apoptotic role of sustained activation of ERK1/2 signaling in glutamate-induced death of astrocytes and the ability of FK506 to block both ERK activation and astrocytic cell death in vitro and in ischemic brains.
Assuntos
Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Tacrolimo/farmacologia , Sistema X-AG de Transporte de Aminoácidos/antagonistas & inibidores , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/fisiologia , Astrócitos/metabolismo , Astrócitos/patologia , Butadienos/farmacologia , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Ácido Glutâmico/metabolismo , Ácido Glutâmico/toxicidade , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/fisiopatologia , Imunossupressores/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Nitrilas/farmacologia , Ratos , Ratos WistarRESUMO
VPS10P domain receptors emerge as central regulators of intracellular protein sorting in neurons with relevance for various brain pathologies. Here, we identified a role for the family member SorCS2 in protection of neurons from oxidative stress and epilepsy-induced cell death. We show that SorCS2 acts as sorting receptor that sustains cell surface expression of the neuronal amino acid transporter EAAT3 to facilitate import of cysteine, required for synthesis of the reactive oxygen species scavenger glutathione. Lack of SorCS2 causes depletion of EAAT3 from the plasma membrane and impairs neuronal cysteine uptake. As a consequence, SorCS2-deficient mice exhibit oxidative brain damage that coincides with enhanced neuronal cell death and increased mortality during epilepsy. Our findings highlight a protective role for SorCS2 in neuronal stress response and provide a possible explanation for upregulation of this receptor seen in surviving neurons of the human epileptic brain.
Assuntos
Epilepsia/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Glutationa/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Receptores de Superfície Celular/metabolismo , Animais , Epilepsia/metabolismo , Epilepsia/patologia , Transportador 3 de Aminoácido Excitatório/biossíntese , Transportador 3 de Aminoácido Excitatório/genética , Feminino , Humanos , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Receptores de Superfície Celular/genéticaRESUMO
The Morris Water Maze is commonly used in behavioural neuroscience for the study of spatial learning with rodents. Over the years, various methods of analysing rodent data collected during this task have been proposed. These methods span from classical performance measurements to more sophisticated categorisation techniques which classify the animal swimming path into behavioural classes known as exploration strategies. Classification techniques provide additional insight into the different types of animal behaviours but still only a limited number of studies utilise them. This is primarily because they depend highly on machine learning knowledge. We have previously demonstrated that the animals implement various strategies and that classifying entire trajectories can lead to the loss of important information. In this work, we have developed a generalised and robust classification methodology to boost classification performance and nullify the need for manual tuning. We have also made available an open-source software based on this methodology.
Assuntos
Aprendizagem em Labirinto/fisiologia , Natação/fisiologia , Algoritmos , Animais , Comportamento Animal , Ratos , SoftwareRESUMO
The neuroprotective potential of allosteric mGlu5 and mGlu1 antagonists such as 6-methyl-2-(phenylethynyl)-pyridin (MPEP)/[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) and (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM), was tested in vitro in organotypic hippocampal cultures and in the middle cerebral artery occlusion model of stroke in vivo. Both classes of agent have high selectivity toward mGlu sub-types and are active in animal models of various diseases indicating satisfactory CNS penetration. In organotypic hippocampal cultures MPEP showed high neuroprotective potency against sub-chronic (12 days) insult produced by 3-NP with an IC50 of c.a. 70 nM. In contrast, although the mGlu1 antagonist EMQMCM was also protective, it seems to be weaker yielding an IC50 of c.a. 1 microM. Similarly, in the transient (90 min) middle cerebral artery occlusion model of ischaemia in rats, MTEP seems to be more effective than EMQMCM. MTEP, at 2.5 mg/kg and at 5 mg/kg provided 50 and 70% neuroprotection if injected 2 h after the onset of ischaemia. At a dose of 5 mg/kg, significant (50%) neuroprotection was also seen if the treatment was delayed by 4 h. EMQMCM was not protective at 5 mg/kg (given 2 h after occlusion) but at 10 mg/kg 50% of neuroprotection was observed. The present data support stronger neuroprotective potential of mGlu5 than mGlu1 antagonists.
Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Fármacos Neuroprotetores/farmacologia , Piridinas/farmacologia , Quinolinas/farmacologia , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Marcação In Situ das Extremidades Cortadas , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptor de Glutamato Metabotrópico 5RESUMO
INTRODUCTION: The misuse of over-the-counter (OTC) drugs became a global public health concern. Although abuse with dextrometorphan (DXM), pseudoefedrine (PSD), codeine (COD) or benzydamine (BND) may lead even to psychosis, drugs containing these substances are relatively cheap and freely available. In Poland the Act on Counteracting Drug Addiction was amended in 2015, however it seems that there are still some points which could be improved. METHODS: Study was conducted between October 2014 and June 2015 using a specially designed questionnaire delivered to pharmacists from the Greater Poland region. Questionnaire consisting of 11 closed questions was distributed by direct contact and via the Internet. From over 2500 distributed questionnaires, we received 761 sheets and 680 were included. RESULTS: The misuse of OTC drugs is increasing in Poland from pharmacists point of view. The most popular substance was PSD followed by COD and DXM. The main reason of misuse of these drugs could be related to the use of Internet and free access to these medications. In respondents (58.2%) opinion OTC drugs containing analyzed substances should be moved into the prescription status. CONCLUSIONS: The misuse of OTC drugs should be considered as a very dangerous phenomenon. Although the Act on Counteracting Drug Addiction was amended in Poland in 2015, there are some facets requiring improvement. Social education may play a key role in the limitation of misuse of OTC drugs.
Assuntos
Medicamentos sem Prescrição/efeitos adversos , Medicamentos sem Prescrição/economia , Farmacêuticos/estatística & dados numéricos , Codeína/efeitos adversos , Serviços Comunitários de Farmácia/organização & administração , Humanos , Medicamentos sem Prescrição/administração & dosagem , Polônia , Papel Profissional/psicologia , Pseudoefedrina/efeitos adversos , Saúde Pública , Transtornos Relacionados ao Uso de Substâncias/prevenção & controle , Inquéritos e QuestionáriosRESUMO
The goal of this study was to determine whether a substantial decrease in adult neurogenesis influences epileptogenesis evoked by the intra-amygdala injection of kainic acid (KA). Cyclin D2 knockout (cD2 KO) mice, which lack adult neurogenesis almost entirely, were used as a model. First, we examined whether status epilepticus (SE) evoked by an intra-amygdala injection of KA induces cell proliferation in cD2 KO mice. On the day after SE, we injected BrdU into mice for 5 days and evaluated the number of DCX- and DCX/BrdU-immunopositive cells 3 days later. In cD2 KO control animals, only a small number of DCX+ cells was observed. The number of DCX+ and DCX/BrdU+ cells/mm of subgranular layer in cD2 KO mice increased significantly following SE (p<0.05). However, the number of newly born cells was very low and was significantly lower than in KA-treated wild type (wt) mice. To evaluate the impact of diminished neurogenesis on epileptogenesis and early epilepsy, we performed video-EEG monitoring of wt and cD2 KO mice for 16 days following SE. The number of animals with seizures did not differ between wt (11 out of 15) and cD2 KO (9 out of 12) mice. The median latency to the first spontaneous seizure was 4 days (range 2-10 days) in wt mice and 8 days (range 2-16 days) in cD2 KO mice and did not differ significantly between groups. Similarly, no differences were observed in median seizure frequency (wt: 1.23, range 0.1-3.4; cD2 KO: 0.57, range 0.1-2.0 seizures/day) or median seizure duration (wt: 51 s, range 23-103; cD2 KO: 51 s, range 23-103). Our results indicate that SE-induced epileptogenesis is not disrupted in mice with markedly reduced adult neurogenesis. However, we cannot exclude the contribution of reduced neurogenesis to the chronic epileptic state.
Assuntos
Tonsila do Cerebelo , Ciclina D2/deficiência , Ácido Caínico/efeitos adversos , Neurogênese , Convulsões , Estado Epiléptico , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/fisiopatologia , Animais , Proteína Duplacortina , Eletroencefalografia , Ácido Caínico/farmacologia , Camundongos , Camundongos Knockout , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/metabolismo , Convulsões/patologia , Convulsões/fisiopatologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/genética , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia , Estado Epiléptico/fisiopatologiaRESUMO
The initial reports regarding a cytotoxic role of calcium ions were published over 30 years ago. In neurons, calcium ions can gain entry into the cell through several mechanisms. These include the over-activation of glutamate receptors (NMDA, AMPA, KA) or of a range of channels and transporters (TRPM2, TRPM7, NCX, ASICs, CaV1.2, and hemichannels). Potentially toxic cytoplasmic calcium concentrations can also occur due to release from internal stores, either through physical damage to mitochondria and the endoplasmic reticulum, or a malfunction of receptors and channels present in their membranes. Such increases of cytoplasmic calcium concentrations can trigger a range of downstream neurotoxic cascades, including the uncoupling mitochondrial electron transfer from ATP synthesis, and the activation and overstimulation of enzymes such as calpains and other proteases, protein kinases, nitric oxide synthase (NOS), calcineurin and endonucleases. Despite the toxic role of calcium, drugs designed to block its entry into neurons have all failed to have any beneficial effects in clinical trials. We suggest that blocking certain receptors and ion channels is unlikely to be a useful therapeutic strategy due to potential deleterious side effects. However, identifying those that are most responsible for cell death and their downstream signalling pathways may lead to improved strategies for treating ischemic and excitotoxic disorders.
Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Morte Celular , Isquemia/metabolismo , Neurônios/metabolismo , Animais , Transporte de Elétrons , Humanos , Isquemia/patologia , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Mitocôndrias/metabolismo , Neurônios/patologia , Óxido Nítrico Sintase/metabolismo , Peptídeo Hidrolases/metabolismo , Receptores de Glutamato/metabolismoRESUMO
Neuron-astrocyte interactions are critical for signalling, energy metabolism, extracellular ion and glutamate homeostasis, volume regulation and neuroprotection in the CNS. Glutamate uptake by astrocytes may prevent excitotoxic glutamate elevation and determine neuronal survival. However, an excess of glutamate can cause the death of astrocytes. FK506, an inhibitor of calcineurin, and an immunosuppressive drug, is neuroprotective in animal models of neurologic diseases, including focal and global ischaemia. In the present work, we demonstrate that a single injection of FK506 60 min after a transient middle cerebral artery occlusion (MCAo) significantly decreases the number of terminal deoxynucleotidyl transferase nick-end labelling (TUNEL)-positive cells in the ischaemic cortex and striatum. Using 3-D confocal microscopy we found that, 24 h after MCAo, many TUNEL-positive cells in the ischaemic striatum and cortex are astrocytes. Furthermore, we demonstrate that exposure of cultured cortical astrocytes to 50-100 mM Glu for 24 h induces apoptotic alterations in nuclear morphology, DNA fragmentation, dissipation of mitochondrial transmembrane potential (DeltaPsi) and caspase activation. FK506 (1 muM) efficiently inhibits Glu-induced apoptosis of cultured astrocytes, DNA fragmentation and changes in mitochondrial DeltaPsi. Our findings suggest that modulation of glutamate-induced astrocyte death early after reperfusion may be a novel mechanism of FK506-mediated neuroprotection in ischaemia.