Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 32: 115994, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33477019

RESUMO

The styrylpyrone dehydrogoniothalamin (1) and two of its dimers (2 and 3) were isolated from the leaves of Aniba heringeri (Lauraceae). Compound 3 is new, while 1 and 2 are being reported for the first time in this species. Structures were determined by 1D- and 2D-NMR spectroscopy, mass spectrometry, and optical rotation data. Cytotoxic effects and selectivity indices were evaluated in five neoplastic cell lines-PC-3 (prostate), 786-0 (renal), HT-29 (colon), MCF-7, and MDA-MB-231 (breast)-and a non-neoplastic cell line, (NIH/3T3, murine fibroblast). Compound 1 inhibited cell growth by 50% (GI50) at concentrations in the 90.4-175.7 µM range, while 2 proved active against MCF-7 and MDA-MB-231 breast cells (GI50 = 12.24, and 34.22 µM, respectively). Compound 3 showed strong cytotoxicity (GI50 = 4.4 µM) against MDA-MB-231 (an established basal triple-negative breast carcinoma (TNBC) cell line), with a high selective index of 35. This compound was subsequently evaluated for apoptosis induction in MDA-MB-231 cells, using GI50 and 50% lethal concentrations (LC50). Flow cytometry analysis showed that at LC50 compound 3 induced cell death with phosphatidylserine externalization and caspase-3 activation. Apoptotic genes were measured by RT-qPCR, revealing an upregulation of BAX, with an increase in expression of the BAX/BCL2 ratio in treated cells. Fluorescence microscopy disclosed morphological changes related to apoptosis. Overall, these findings showed compound 3 to be a promising prototype against TNBC cells that tend to respond poorly to conventional therapies.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Lauraceae/química , Piranos/farmacologia , Estirenos/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Piranos/química , Piranos/isolamento & purificação , Relação Estrutura-Atividade , Estirenos/química , Estirenos/isolamento & purificação , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
2.
PLoS One ; 16(1): e0245882, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33507972

RESUMO

Butanolides have shown a variety of biological effects including anti-inflammatory, antibacterial, and antiprotozoal effects against certain strains of Trypanosoma cruzi. Considering the lack of an effective drug to treat T. cruzi infections and the prominent results obtained in literature with this class of lactones, we investigated the anti-T. cruzi activity of five butanolides isolated from two species of Lauraceae, Aiouea trinervis and Mezilaurus crassiramea. Initially, the activity of these compounds was evaluated on epimastigote forms of the parasite, after a treatment period of 4 h, followed by testing on amastigotes, trypomastigotes, and mammalian cells. Next, the synergistic effect of active butanolides against amastigotes was evaluated. Further, metacyclogenesis inhibition and infectivity assays were performed for the most active compound, followed by ultrastructural analysis of the treated amastigotes and trypomastigotes. Among the five butanolides studied, majoranolide and isoobtusilactone A were active against all forms of the parasite, with good selectivity indexes in Vero cells. Both butanolides were more active than the control drug against trypomastigote and epimastigote forms and also had a synergic effect on amastigotes. The most active compound, isoobtusilactone A, which showed activity against all tested strains inhibited metacyclogenesis and infection of new host cells. In addition, ultrastructural analysis revealed that this butanolide caused extensive damage to the mitochondria of both amastigotes and trypomastigotes, resulting in severe morphological changes in the infective forms of the parasite. Altogether, our results highlight the potential of butanolides against the etiologic agent of Chagas disease and the relevance of isoobtusilactone A as a strong anti-T. cruzi drug, affecting different events of the life cycle and all evolutionary forms of parasite after a short period of exposure.


Assuntos
Alcanos/farmacologia , Lactonas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Chlorocebus aethiops , Sinergismo Farmacológico , Estágios do Ciclo de Vida/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/ultraestrutura , Células Vero
3.
Artigo em Inglês | MEDLINE | ID: mdl-30941193

RESUMO

Majoranolide, a butanolide isolated from the nonpolar fraction of an ethanol extract of Mezilaurus crassiramea (Lauraceae) fruits, is being reported for the first time in this genus and the third time in plants. Structurally identified from 1D and 2D NMR and HRESIMS data, majoranolide proved cytotoxic against cancer cells-MCF-7 and MDA-MB-231 (breast), HT-29 (colon), PC-3 (prostate), 786-0 (renal), and HL-60 (leukemia)-inhibiting growth in HL-60 cells (GI50 = 0.21 µM) and exhibiting higher selectivity for this line than for nonneoplastic NIH/3T3 murine fibroblasts. Effects on the cell cycle, caspase-3 activation, and plasma membrane integrity were evaluated by flow cytometry. Expression of genes related to apoptotic pathways (BAX, BCL2, BIRC5, and CASP8) was investigated using RT-qPCR. At 50 µM, majoranolide induced cell cycle arrest at G1 in 24 h increased the sub-G1 population in 48 h and increased caspase-3 activation in a time-dependent manner. The compound upregulated BAX and CASP8 transcription (proapoptotic genes) and downregulated BIRC5 (antiapoptotic). Loss of plasma membrane integrity in 30% of cells occurred at 48 h, but not at 24 h, characterizing gradual, programmed death. The results suggest that majoranolide cytotoxicity involves apoptosis induction in HL-60 cells, although other mechanisms may contribute to this cell death.

4.
Rev. bras. farmacogn ; 23(3): 441-446, May-June 2013. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-676275

RESUMO

The cytotoxicity of a hexanic fraction produced from the ethanolic crude extract, obtained from Jatropha ribifolia (Pohl) Baill, Euphorbiaceae, roots was evaluated against ten human cancer cell lines (MCF-7, NCI-ADR/RES, OVCAR-3, PC-3, HT-29, NCI-H460,786-O, UACC-62, K-562, U251) compared with doxorrubicine as positive control. Compounds jatrophone and cyperenoic acid were isolated from the hexanic extract and characterized by spectroscopic techniques (NMR of ¹H, 13C and IR). The in vitro antiproliferative activity of jatrophone showed selectivity in a concentration dependent way with Total Inhibition growth of: glioma 0.57 µg mL-1 (U251), breast cancer 9.2 µg mL-1 (MCF-7), adriamycin-resistant ovarian cancer 0.96 µg mL-1 (NCI-ADR/RES), kidney 4.2 µg mL-1 (786-0), prostate cancer 8.4 µg mL-1 (PC-3), colon cancer 16.1 µg mL-1 (HT29) and leukemia 0.21 µg mL-1 (K-562).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA