Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(20): 9508-9514, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37844301

RESUMO

Bilayer graphene (BLG) was recently shown to host a band-inverted phase with unconventional topology emerging from the Ising-type spin-orbit interaction (SOI) induced by the proximity of transition metal dichalcogenides with large intrinsic SOI. Here, we report the stabilization of this band-inverted phase in BLG symmetrically encapsulated in tungsten diselenide (WSe2) via hydrostatic pressure. Our observations from low temperature transport measurements are consistent with a single particle model with induced Ising SOI of opposite sign on the two graphene layers. To confirm the strengthening of the inverted phase, we present thermal activation measurements and show that the SOI-induced band gap increases by more than 100% due to the applied pressure. Finally, the investigation of Landau level spectra reveals the dependence of the level-crossings on the applied magnetic field, which further confirms the enhancement of SOI with pressure.

2.
Nano Lett ; 21(20): 8777-8784, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34662136

RESUMO

Twisted two-dimensional structures open new possibilities in band structure engineering. At magic twist angles, flat bands emerge, which gave a new drive to the field of strongly correlated physics. In twisted double bilayer graphene dual gating allows changing of the Fermi level and hence the electron density and also allows tuning of the interlayer potential, giving further control over band gaps. Here, we demonstrate that by application of hydrostatic pressure, an additional control of the band structure becomes possible due to the change of tunnel couplings between the layers. We find that the flat bands and the gaps separating them can be drastically changed by pressures up to 2 GPa, in good agreement with our theoretical simulations. Furthermore, our measurements suggest that in finite magnetic field due to pressure a topologically nontrivial band gap opens at the charge neutrality point at zero displacement field.

3.
Nano Lett ; 18(6): 3950-3955, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29763556

RESUMO

Indium selenide, a post-transition metal chalcogenide, is a novel two-dimensional (2D) semiconductor with interesting electronic properties. Its tunable band gap and high electron mobility have already attracted considerable research interest. Here we demonstrate strong quantum confinement and manipulation of single electrons in devices made from few-layer crystals of InSe using electrostatic gating. We report on gate-controlled quantum dots in the Coulomb blockade regime as well as one-dimensional quantization in point contacts, revealing multiple plateaus. The work represents an important milestone in the development of quality devices based on 2D materials and makes InSe a prime candidate for relevant electronic and optoelectronic applications.

4.
Phys Rev Lett ; 114(3): 036601, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25659011

RESUMO

Artificial graphene consisting of honeycomb lattices other than the atomic layer of carbon has been shown to exhibit electronic properties similar to real graphene. Here, we reverse the argument to show that transport properties of real graphene can be captured by simulations using "theoretical artificial graphene." To prove this, we first derive a simple condition, along with its restrictions, to achieve band structure invariance for a scalable graphene lattice. We then present transport measurements for an ultraclean suspended single-layer graphene pn junction device, where ballistic transport features from complex Fabry-Pérot interference (at zero magnetic field) to the quantum Hall effect (at unusually low field) are observed and are well reproduced by transport simulations based on properly scaled single-particle tight-binding models. Our findings indicate that transport simulations for graphene can be efficiently performed with a strongly reduced number of atomic sites, allowing for reliable predictions for electric properties of complex graphene devices. We demonstrate the capability of the model by applying it to predict so-far unexplored gate-defined conductance quantization in single-layer graphene.

5.
Nat Commun ; 11(1): 125, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913279

RESUMO

Control over the quantization of electrons in quantum wells is at the heart of the functioning of modern advanced electronics; high electron mobility transistors, semiconductor and Capasso terahertz lasers, and many others. However, this avenue has not been explored in the case of 2D materials. Here we apply this concept to van der Waals heterostructures using the thickness of exfoliated crystals to control the quantum well dimensions in few-layer semiconductor InSe. This approach realizes precise control over the energy of the subbands and their uniformity guarantees extremely high quality electronic transport in these systems. Using tunnelling and light emitting devices, we reveal the full subband structure by studying resonance features in the tunnelling current, photoabsorption and light emission spectra. In the future, these systems could enable development of elementary blocks for atomically thin infrared and THz light sources based on intersubband optical transitions in few-layer van der Waals materials.

6.
Nanoscale ; 8(22): 11480-6, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27198562

RESUMO

We report on the observation of periodic conductance oscillations near quantum Hall plateaus in suspended graphene nanoribbons. They are attributed to single quantum dots that are formed in the narrowest part of the ribbon, in the valleys and hills of a disorder potential. In a wide flake with two gates, a double-dot system's signature has been observed. Electrostatic confinement is enabled in single-layer graphene due to the gaps that are formed between the Landau levels, suggesting a way to create gate-defined quantum dots that can be accessed with quantum Hall edge states.

7.
Nanoscale ; 8(47): 19910-19916, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27878177

RESUMO

The formation of quantum Hall channels inside the bulk of graphene is studied using various contact and gate geometries. p-n junctions are created along the longitudinal direction of samples, and enhanced conductance is observed in the case of bipolar doping due to the new conducting channels formed in the bulk, whose position, propagating direction and, in one geometry, coupling to electrodes are determined by the gate-controlled filling factor across the device. This effect could be exploited to probe the behavior and interaction of quantum Hall channels protected against uncontrolled scattering at the edges.

8.
Nat Commun ; 6: 6470, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25732244

RESUMO

Snake states are trajectories of charge carriers curving back and forth along an interface. There are two types of snake states, formed by either inverting the magnetic field direction or the charge carrier type at an interface. The former has been demonstrated in GaAs-AlGaAs heterostructures, whereas the latter has become conceivable only with the advance of ballistic graphene where a gap-less p-n interface governed by Klein tunnelling can be formed. Such snake states were hidden in previous experiments due to limited sample quality. Here we report on magneto-conductance oscillations due to snake states in a ballistic suspended graphene p-n junction, which occur already at a very small magnetic field of 20 mT. The visibility of 30% is enabled by Klein collimation. Our finding is firmly supported by quantum transport simulations. We demonstrate the high tunability of the device and operate it in different magnetic field regimes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA