Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Microbiol ; 59(3)2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33328175

RESUMO

The environmental bacterium Pseudomonas aeruginosa, particularly multidrug-resistant clones, is often associated with nosocomial infections and outbreaks. Today, core genome multilocus sequence typing (cgMLST) is frequently applied to delineate sporadic cases from nosocomial transmissions. However, until recently, no cgMLST scheme for a standardized typing of P. aeruginosa was available. To establish a novel cgMLST scheme for P. aeruginosa, we initially determined the breadth of the P. aeruginosa population based on MLST data with a Bayesian approach (BAPS). Using genomic data of representative isolates for the whole population and all 12 serogroups, we extracted target genes and further refined them using a random data set of 1,000 P. aeruginosa genomes. Subsequently, we investigated reproducibility and discriminatory ability with repeatedly sequenced isolates and isolates from well-defined outbreak scenarios, respectively, and compared clustering applying two recently published cgMLST schemes. BAPS generated seven P. aeruginosa groups. To cover these and all serogroups, 15 reference strains were used to determine genes common in all strains. After refinement with the data set of 1,000 genomes, the cgMLST scheme consisted of 3,867 target genes, which are representative of the P. aeruginosa population and highly reproducible using biological replicates. We finally evaluated the scheme by reanalyzing two published outbreaks where the authors used single-nucleotide polymorphism (SNP) typing. In both cases, cgMLST was concordant with the previous SNP results and the results of the two other cgMLST schemes. In conclusion, the highly reproducible novel P. aeruginosa cgMLST scheme facilitates outbreak investigations due to the publicly available cgMLST nomenclature.


Assuntos
Genoma Bacteriano , Pseudomonas aeruginosa , Teorema de Bayes , Genoma Bacteriano/genética , Humanos , Tipagem de Sequências Multilocus , Pseudomonas aeruginosa/genética , Reprodutibilidade dos Testes
2.
Antimicrob Resist Infect Control ; 13(1): 1, 2024 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-38184647

RESUMO

BACKGROUND: We analyzed an outbreak of Bacillus cereus group (Bcg) at a single-center neonatal intensive care unit level IV by conducting comprehensive sampling of both patients and the environment. METHODS: Between 06/2020 and 10/2021, all Bcg isolates identified by both regular colonization screening and additional sampling of the environment were subjected to whole-genome sequencing, followed by in vitro extraction of MLST ST, resistance genes and virulence factors. Using publicly available genome sequences, we defined an ad hoc core genome multilocus sequence typing (cgMLST) scheme comprising 2759 target genes for Bcg typing, which we applied to the detected isolates. We have compared the results with a stable cgMLST that was published in the meantime and completed the investigation with a SNP analysis. RESULTS: We analyzed 28 Bcg isolates from patient and environmental samples using MLST and cgMLST. This revealed multiple sequence types, with ST127 being the most common (n = 13). Both cgMLST schemes grouped ten of the 13 ST127 isolates into a cluster, including two invasive isolates from two different patients and several environmental samples. SNP analysis postulated a screen from a ventilation machine as a possible reservoir. CONCLUSION: In sensitive settings such as neonatal intensive care units, considering the environment in outbreak analyses is crucial, especially when investigating potential transmission routes through shared devices. When dealing with widespread bacteria such as Bcg, high-resolution typing techniques are necessary. In this study, we successfully resolved an outbreak of Bcg infections using a custom cgMLST scheme combined with a SNP analysis.


Assuntos
Bacillus cereus , Bacillus , Recém-Nascido , Humanos , Unidades de Terapia Intensiva Neonatal , Tipagem de Sequências Multilocus , Surtos de Doenças
3.
Microorganisms ; 11(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37512978

RESUMO

Staphylococcus epidermidis (S. epidermidis) is part of the human skin flora but can also cause nosocomial infections, such as device-associated infections, especially in vulnerable patient groups. Here, we investigated clinical isolates of linezolid-resistant S. epidermidis (LRSE) collected from blood cultures at the University Hospital Münster (UHM) during the period 2020-2022. All detected isolates were subjected to whole genome sequencing (WGS) and the relatedness of the isolates was determined using core genome multilocus sequence typing (cgMLST). The 15 LRSE isolates detected were classified as multilocus sequence type (ST) 2 carrying the staphylococcal cassette chromosome mec (SCCmec) type III. All isolates showed high-level resistance for linezolid by gradient tests. However, no isolate carried the cfr gene that is often associated with linezolid resistance. Analysis of cgMLST data sets revealed a cluster of six closely related LRSE isolates, suggesting a transmission event on a hematological/oncological ward at our hospital. Among the included patients, the majority of patients affected by LRSE infections had underlying hematological malignancies. This confirms previous observations that this patient group is particularly vulnerable to LRSE infection. Our data emphasize that the surveillance of LRSE in the hospital setting is a necessary step to prevent the spread of multidrug-resistant S. epidermidis among vulnerable patient groups, such as patients with hematological malignancies, immunosuppression or patients in intensive care units.

4.
Sci Data ; 10(1): 654, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741862

RESUMO

The COVID-19 pandemic has made it clear: sharing and exchanging data among research institutions is crucial in order to efficiently respond to global health threats. This can be facilitated by defining health data models based on interoperability standards. In Germany, a national effort is in progress to create common data models using international healthcare IT standards. In this context, collaborative work on a data set module for microbiology is of particular importance as the WHO has declared antimicrobial resistance one of the top global public health threats that humanity is facing. In this article, we describe how we developed a common model for microbiology data in an interdisciplinary collaborative effort and how we make use of the standard HL7 FHIR and terminologies such as SNOMED CT or LOINC to ensure syntactic and semantic interoperability. The use of international healthcare standards qualifies our data model to be adopted beyond the environment where it was first developed and used at an international level.


Assuntos
COVID-19 , Humanos , Pandemias , Alemanha , Instalações de Saúde , Ciências Humanas
5.
Antimicrob Resist Infect Control ; 9(1): 154, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32962759

RESUMO

BACKGROUND: Currently, hospitals have been forced to divert substantial resources to cope with the ongoing coronavirus disease 2019 (COVID-19) pandemic. It is unclear if this situation will affect long-standing infection prevention practices and impact on healthcare associated infections. Here, we report a nosocomial cluster of vancomycin-resistant enterococci (VRE) that occurred on a COVID-19 dedicated intensive care unit (ICU) despite intensified contact precautions during the current pandemic. Whole genome sequence-based typing (WGS) was used to investigate genetic relatedness of VRE isolates collected from COVID-19 and non-COVID-19 patients during the outbreak and to compare them to environmental VRE samples. METHODS: Five VRE isolated from patients (three clinical and two screening samples) as well as 11 VRE and six vancomycin susceptible Enterococcus faecium (E. faecium) samples from environmental sites underwent WGS during the outbreak investigation. Isolate relatedness was determined using core genome multilocus sequence typing (cgMLST). RESULTS: WGS revealed two genotypic distinct VRE clusters with genetically closely related patient and environmental isolates. The cluster was terminated by enhanced infection control bundle strategies. CONCLUSIONS: Our results illustrate the importance of continued adherence to infection prevention and control measures during the COVID-19 pandemic to prevent VRE transmission and healthcare associated infections.


Assuntos
Coinfecção/tratamento farmacológico , Infecção Hospitalar/epidemiologia , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/epidemiologia , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Betacoronavirus , COVID-19 , Coinfecção/microbiologia , Infecções por Coronavirus/patologia , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia , Surtos de Doenças , Genoma Bacteriano/genética , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Controle de Infecções , Unidades de Terapia Intensiva , Tipagem de Sequências Multilocus , Pandemias , Pneumonia Viral/patologia , Prevenção Primária , SARS-CoV-2 , Enterococos Resistentes à Vancomicina/genética , Enterococos Resistentes à Vancomicina/isolamento & purificação , Sequenciamento Completo do Genoma
6.
Microorganisms ; 8(2)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32024001

RESUMO

Vancomycin-resistant enterococci (VRE) are relevant nosocomial pathogens with an increasing incidence in the last decades. Their transmission is optimal in the hospital setting, as it offers two potential, large reservoirs that are closely related: susceptible patients and their environment. Here we investigate the role of the hospital environment in the nosocomial transmission of VRE by establishing concrete links between contaminated surfaces and colonized/infected patients in outbreak and non-outbreak settings. Environmental and patient VRE isolates were collected between 2013 and 2019 and analyzed by whole-genome sequencing (WGS), subsequent multilocus sequence typing (MLST), and core genome (cg) MLST. Pairs of isolates differing in <3 alleles were rated as closely related, making a transmission likely. Fifty-three environmental VRE isolates were analyzed. MLST sequence types (ST) ST203 (50.0%), ST192 (21.3%), ST117 (17.3%), ST721 (8.8%), ST80 (2%), and ST1489 (0.7%) were detected, carrying the resistance determinants vanA (72.7%), vanB (24%), or both (3.3%). Of the 53 environmental isolates, 51 were found to form five clusters with genetically related patient isolates (n = 97 isolates). WGS confirms the role of the environment in the transmission dynamics of VRE in both the outbreak and non-outbreak settings, highlighting the importance of prevention and control of VRE spread.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA