Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Semin Cancer Biol ; 86(Pt 2): 720-736, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35257861

RESUMO

Chemokines are small secreted proteins that regulate the immune system by signaling through chemokine receptors to induce immune cell migration, motility, and infiltration into the tissue. Altered chemokine/receptor expression is associated with numerous inflammatory diseases, and more recently in non-immune cell diseases like cancer. Emerging new studies demonstrate that chemokines can directly modulate the tumor microenvironment (TME) to assist tumorigenesis by regulating proinflammatory signaling, immune cell infiltration,and metastasis. However, the diversity and complexity in the regulation of chemokine expression and how chemokine receptor signaling influences TME needs comprehensive understanding. One mechanistic pathway that has shown promising early results in targeting tumor progression is the non-coding RNAs (ncRNAs). These are widely expressed and designated as prime gene regulatory factors in tumors and the immune system. Notably, ncRNAs have been implicated in regulating chromatin stability, translation of cytoplasmic mRNAs, and the functional regulation of membrane-less nuclear bodies, which are significant pathways implicated in tumorigenesis. Tissue-specific patterns of expression of ncRNAs have suggested their role as potential cancer biomarkers, providing a suitable rationale for targeting them clinically. In this review, we discuss the recent findings which demonstrate the role of differential expression of chemokines and ncRNA in modulating TME during tumor progression. We also discuss the communication between tumor and immune effector cells via chemokine/ncRNAs and identify their potential as novel therapeutic targets.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Neoplasias/patologia , RNA não Traduzido/genética , Quimiocinas/genética , Quimiocinas/metabolismo , Transformação Celular Neoplásica , Carcinogênese
2.
3 Biotech ; 14(11): 273, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39444988

RESUMO

As one of the most prevalent malignancies, lung cancer displays considerable biological variability in both molecular and clinical characteristics. Lung cancer is broadly categorized into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) with the latter being most prevalent. The primary histological subtypes of NSCLC are lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). In the present work, we primarily extracted mRNA count data from a publicly accessible database followed by differentially expressed genes (DEGs) and differentially expressed mitophagy-related genes (DEMRGs) identification in case of both LUAD and LUSC cohorts. Next, we identified important DEMRGs via clustering approach followed by enrichment, survival, and mutational analyses. Lastly, the finalized prognostic biomarker was validated using wet-lab experimentations. Primarily, we obtained 986 and 1714 DEGs across LUAD and LUSC cohorts. Only 7 DEMRGs from both cohorts had significant membership values as indicated by the clustering analysis. Most significant pathway, Gene Ontology (GO)-biological process (BP), GO-molecular function (MF), GO-cellular compartment (CC) terms were macroautophagy, GTP metabolic process, magnesium ion binding, mitochondrial outer membrane. Among all, only TDRKH reported significant overall survival (OS) and 14% amplification across LUAD patients. Lastly, we validated TDRKH via immunohistochemistry (IHC) and semi-quantitative polymerase chain reaction (PCR). In conclusion, our findings advocate for the exploration of TDRKH and their genetic alterations in precision oncology therapeutic approaches for LUAD, emphasizing the potential for target-driven therapy and early diagnostics. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04127-y.

3.
J Biomol Struct Dyn ; 41(18): 9089-9102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36318595

RESUMO

Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. Smoking has been identified as the main contributing cause of the disease's development. The study aimed to identify the key genes in small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), the two major types of LC. Meta-analysis was performed with two datasets GSE74706 and GSE149507 obtained from Gene Expression Omnibus (GEO). Both the datasets comprised samples from cancerous and adjacent non-cancerous tissues. Initially, 633 differentially expressed genes (DEGs) were identified. To understand the underlying molecular mechanism of the identified genes, pathway enrichment, gene ontology (GO) and protein-protein interaction (PPI) analyses were done. A total of 9 hub genes were identified which were subjected to mutation study analysis in LC patients using cBioPortal. These  9 genes (i.e. AURKA, AURKB, KIF23, RACGAP1, KIF2C, KIF20A, CENPE, TPX2 and PRC1) have shown overexpression in LC patients and can be explored as potential candidates for prognostic biomarkers. TPX2 reported a maximum mutation of 4%. This was followed with high throughput screening and docking analysis to identify the potential drug candidates following competitive inhibition of the AURKA-TPX2 complex. Four compounds, CHEMBL431482, CHEMBL2263042, CHEMBL2385714, and CHEMBL1206617 were identified. The results signify that the selected 9 genes can be explored as biomarkers in disease prognosis and targeted therapy. Also, the identified 4 compounds can be further analyzed as promising therapeutic candidates.Communicated by Ramaswamy H. Sarma.

4.
Sci Rep ; 13(1): 9859, 2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330525

RESUMO

Lung cancer is the leading cause of mortality from cancer worldwide. Lung adenocarcinoma (LUAD) is a type of non-small cell lung cancer (NSCLC) with highest prevalence. Kinesins a class of motor proteins are shown to be involved in carcinogenesis. We conducted expression, stage plot and survival analyses on kinesin superfamily (KIF) and scrutinized the key prognostic kinesins. Genomic alterations of these kinesins were studied thereafter via cBioPortal. A protein-protein interaction network (PPIN) of selected kinesins and 50 closest altering genes was constructed followed by gene ontology (GO) term and pathway enrichment analyses. Multivariate survival analysis based on CpG methylation of selected kinesins was performed. Lastly, we conducted tumor immune infiltration analysis. Our results found KIF11/15/18B/20A/2C/4A/C1 to be significantly upregulated and correlated with poor survival in LUAD patients. These genes also showed to be highly associated with cell cycle. Out of our seven selected kinesins, KIFC1 showed the highest genomic alteration with highest number of CpG methylation. Also, CpG island (CGI) cg24827036 was discovered to be linked to LUAD prognosis. Therefore, we deduced that reducing the expression of KIFC1 could be a feasible treatment strategy and that it can be a wonderful individual prognostic biomarker. CGI cg24827036 can also be used as a therapy site in addition to being a great prognostic biomarker.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Cinesinas/genética , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/genética , Biologia Computacional , Biomarcadores , Prognóstico
5.
Free Radic Biol Med ; 189: 71-84, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35853537

RESUMO

Sphingolipid metabolism is the forefront area of cancer research, but the underlying mechanisms are not fully explored yet. Sphingolipid metabolites [ceramide, sphingosine-1-phosphate (S1P)] are critical players in cell growth and apoptosis. Sphk1 is a key enzyme, catalyzing the phosphorylation of sphingosine to S1P, favoring cell proliferation and survival. Contrarily, ceramide induces cell cycle arrest and apoptosis. Sphk1 also exerts regulatory roles in numerous cellular processes, wherein microRNAs (miRNAs) play a momentous role. However, miR-mediated regulation of Sphk1 in Non-small cell lung cancer (NSCLC), continues to be elusive. miR-495 is highly downregulated and worsens NSCLC prognosis. The present study demonstrates Sphk1 upregulation and poor prognosis in NSCLC. However, miR-495-3p directly targets Sphk1, and possesses tumor-suppressive roles by decreasing cell proliferation, wound healing, colony formation, LDH-A activity, and inducing G0/G1 phase cell cycle arrest upon restoration. Besides, we also found ceramide accretion upon Sphk1 inhibition, leading to mitochondrial dysregulation. We found a cogent upregulation of Drp-1, PARK2 and LC3ß, along with degradation of PINK1 and Mfn2, demonstrating an imbalance in mitochondrial fission/fusion and induction of mitophagy, even during PINK1 deficiency. Later, we found a reduction in mitochondrial energy homeostasis, mitochondrial membrane potential, increased ROS generation and ultimately initiation of apoptosis, upon miR-495-3p overexpression. Overall, we showed that miR-495-3p reprograms sphingolipid rheostat towards ceramide by targeting Sphk1 and induces lethal mitophagy to suppress NSCLC tumorigenesis. The study identified a miR-mediated mechanism of sphingolipid reprogramming that could be beneficial in designing novel therapeutic strategies for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Apoptose , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Ceramidas/metabolismo , Humanos , Neoplasias Pulmonares/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Mitofagia/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Quinases , Esfingolipídeos/metabolismo
6.
Life Sci ; 304: 120722, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35714705

RESUMO

BACKGROUND AND AIM: Cancer cells exhibit Warburg effect, characterized by increased glycolysis followed by fermentative conversion of pyruvate to lactate. Upregulation of Lactate Dehydrogenase-A (LDH-A) is elucidated to be a dominant molecular mediator of the phenomenon. Also, microRNA (miRNA) dysregulation participates in malignant progression and dissemination in several cancers. miR-16-5p is considerably reduced in lung cancers (LC), suggesting its tumor-suppressive role. However, its role in the regulation of aerobic glycolysis remains unknown. Our study aims to identify the regulatory roles of miR-16-5p/LDH-A in Non-small cell lung cancer (NSCLC). MAIN METHODS: We evaluated the differential expression of LDH-A and its prognostic potential in NSCLC tissues using online databases. We performed Tissue analysis using Immunohistochemistry (IHC); In-vitro cellular analysis including transient transfection, cellular proliferation, migration, and colony forming analysis. We also performed cell survival, metabolic, cell cycle, apoptotic, ROS generation and Immunocytochemistry (ICC) analyses to identify the role of miR-16-5p/LDH-A in aerobic glycolysis and tumorigenesis of NSCLC. KEY FINDINGS: We have identified that miR-16-5p directly targets LDH-A by binding to the complementary binding regions present in its 3'-UTR region, leading to degradation, sequentially leading to reduced lactate accumulation, glucose uptake and ATP levels. Our study also demonstrated the role of lactate accumulation in promoting NSCLC tumorigenesis via activation of NF-κB signaling pathway. However, miR-16-5p mediated targeting of LDH-A downregulates the expression of NF-κB associated genes, along with increased ROS generation, apoptosis, and cell cycle arrest. SIGNIFICANCE: In conclusion, our findings identify miR-16-5p/LDH-A/lactate/NF-κB as an important link between metabolism and NSCLC cells tumorigenesis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Lactato Desidrogenase 5 , Lactatos , Neoplasias Pulmonares , MicroRNAs , NF-kappa B , Regiões 3' não Traduzidas , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/genética , Glicólise/genética , Humanos , Lactato Desidrogenase 5/metabolismo , Lactatos/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
7.
Mitochondrion ; 59: 63-75, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33894359

RESUMO

Sepsis is a systemic inflammatory disease with an unacceptably high mortality rate caused by an infection or trauma that involves both innate and adaptive immune systems. Inflammatory events activate different downstream pathways leading to tissue damage and ultimately multi-organ failure. Mitochondria are responsible for cellular energy, thermoregulation, metabolite biosynthesis, intracellular calcium regulation, and cell death. Damaged mitochondria induce the high Ca2+ influx through mitochondrial calcium uniporter (MCU). It also generates excessive Reactive oxygen species (ROS) and releases mtDNA into the cytoplasm, which causes induction of NLRP3 inflammasome and apoptosis. Mitophagy (Autophagy of damaged mitochondria) controls mitochondrial dynamics and function. It also maintains cellular homeostasis. This review is about how pulmonary sepsis affects the body. What is the aftermath of sepsis, and how mitophagy affects Acute Lung Injury and macrophage polarisation to overcome the damages.


Assuntos
DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Pneumonia/metabolismo , Sepse/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Humanos , Inflamassomos/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Mitofagia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA