Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 535(7610): 140-3, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27309815

RESUMO

The theory of plate tectonics describes how the surface of Earth is split into an organized jigsaw of seven large plates of similar sizes and a population of smaller plates whose areas follow a fractal distribution. The reconstruction of global tectonics during the past 200 million years suggests that this layout is probably a long-term feature of Earth, but the forces governing it are unknown. Previous studies, primarily based on the statistical properties of plate distributions, were unable to resolve how the size of the plates is determined by the properties of the lithosphere and the underlying mantle convection. Here we demonstrate that the plate layout of Earth is produced by a dynamic feedback between mantle convection and the strength of the lithosphere. Using three-dimensional spherical models of mantle convection that self-consistently produce the plate size­frequency distribution observed for Earth, we show that subduction geometry drives the tectonic fragmentation that generates plates. The spacing between the slabs controls the layout of large plates, and the stresses caused by the bending of trenches break plates into smaller fragments. Our results explain why the fast evolution in small back-arc plates reflects the marked changes in plate motions during times of major reorganizations. Our study opens the way to using convection simulations with plate-like behaviour to unravel how global tectonics and mantle convection are dynamically connected.

2.
Nature ; 434(7035): 882-6, 2005 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-15829961

RESUMO

The thermal structure of the Earth's lowermost mantle--the D'' layer spanning depths of approximately 2,600-2,900 kilometres--is key to understanding the dynamical state and history of our planet. Earth's temperature profile (the geotherm) is mostly constrained by phase transitions, such as freezing at the inner-core boundary or changes in crystal structure within the solid mantle, that are detected as discontinuities in seismic wave speed and for which the pressure and temperature conditions can be constrained by experiment and theory. A recently discovered phase transition at pressures of the D'' layer is ideally situated to reveal the thermal structure of the lowermost mantle, where no phase transitions were previously known to exist. Here we show that a pair of seismic discontinuities observed in some regions of D'' can be explained by the same phase transition as the result of a double-crossing of the phase boundary by the geotherm at two different depths. This simple model can also explain why a seismic discontinuity is not observed in some other regions, and provides new constraints for the magnitude of temperature variations within D''.

3.
Sci Bull (Beijing) ; 66(16): 1691-1697, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36654303

RESUMO

The history of the Hawaiian hotspot is of enduring interest in studies of plate motion and mantle flow, and has been investigated by many researchers using the detailed history of the Hawaiian-Emperor Seamount chain. One of the unexplained aspects of this history is the apparent offset of several Emperor seamounts from the Hawaii plume track. Here we show that the volcanic migration rates of the Emperor seamounts based on existing data are inconsistent with the drifting rate of the Pacific plate, and indicate northward and then southward "absolute movements" of the seamounts. Numerical modeling suggests that attraction and capture of the upper part of the plume by a moving spreading ridge led to variation in the location of the plume's magmatic output at the surface. Flow of the plume material towards the ridge led to apparent southward movement of Meiji. Then, the upper part of the plume was carried northward until 65 Ma ago. After the ridge and the plume became sufficiently separated, magmatic output moved back to be centered over the plume stem. These changes are apparent in variations in the volume of seamounts along the plume track. Chemical and isotopic compositions of basalt from the Emperor Seamount chain changed from depleted (strong mid-ocean ridge affinity) in Meiji and Detroit to enriched (ocean island type), supporting declining influence from the ridge. Although its surface expression was modified by mantle flow and by plume-ridge interactions, the stem of the Hawaiian plume may have been essentially stationary during the Emperor period.


Assuntos
Erupções Vulcânicas , Havaí
4.
Philos Trans A Math Phys Eng Sci ; 360(1800): 2593-609, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12460482

RESUMO

Geochemical observations place several constraints on geophysical processes in the mantle, including a requirement to maintain several distinct reservoirs. Geophysical constraints limit plausible physical locations of these reservoirs to a thin basal layer, isolated deep 'piles' of material under large-scale mantle upwellings, high-viscosity blobs/plums or thin strips throughout the mantle, or some combination of these. A numerical model capable of simulating the thermochemical evolution of the mantle is introduced. Preliminary simulations are more differentiated than Earth but display some of the proposed thermochemical processes, including the generation of a high-mu mantle reservoir by recycling of crust, and the generation of a high-(3)He/(4)He reservoir by recycling of residuum, although the resulting high-(3)He/(4)He material tends to aggregate near the top, where mid-ocean-ridge melting should sample it. If primitive material exists as a dense basal layer, it must be much denser than subducted crust in order to retain its primitive (e.g. high-(3)He) signature. Much progress is expected in the near future.


Assuntos
Planeta Terra , Evolução Química , Evolução Planetária , Sedimentos Geológicos/química , Modelos Teóricos , Reologia/métodos , Simulação por Computador , Convecção , Geologia/métodos , Isótopos/análise , Modelos Químicos , Movimento (Física) , Sensibilidade e Especificidade , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA