Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 56: 263-271, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27393237

RESUMO

In this study, the effects of baker's yeast as probiotics was evaluated in Nile tilapia reared at high density. Juvenile tilapia were distributed to tanks at high density (436 fish/m(3)) and fed with basal diet (CK) or diets supplemented with live (LY) or heat-inactivated yeast (HIY). Another group of fish reared at low density (218 fish/m(3)) and fed with basal diet was also included (LowCK). After 8 weeks of feeding, growth, feed utilization, gut microvilli morphology, digestive enzymes, and expressions of hsp70 and inflammation-related cytokines in the intestine were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Fish were challenged with Aeromonas hydrophila to evaluate disease resistance. High rearing density significantly decreased the growth, feed utilization, microvilli length, and disease resistance of fish (CK versus LowCK). Moreover, the intestinal hsp70 expression was increased in fish reared at high density, supporting a stress condition. Compared to CK group, supplementation of live yeast significantly increased gut microvilli length and trypsin activity, decreased intestinal hsp70 expression, and enhanced resistance of fish against A. hydrophila (reflected by reduced intestinal alkaline phosphatase activity 24 h post infection). The gut microbiota was not markedly influenced by either rearing density or yeast supplementation. Heat-inactivated yeast (HIY) didn't display the beneficial effects observed in LY except an increase in gut trypsin activity, suggesting the importance of yeast viability and thus secretory metabolites of yeast. In conclusion, live baker's yeast may alleviate the negative effects induced by crowding stress, and has the potential to be used as probiotics for tilapia reared at high density.


Assuntos
Ciclídeos , Doenças dos Peixes/genética , Infecções por Bactérias Gram-Negativas/veterinária , Imunidade Inata , Probióticos/farmacologia , Saccharomyces cerevisiae/química , Aeromonas hydrophila/fisiologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bactérias/classificação , Ciclídeos/crescimento & desenvolvimento , Citocinas/genética , Citocinas/metabolismo , Dieta/veterinária , Resistência à Doença , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Microbioma Gastrointestinal , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Temperatura Alta , Intestinos/enzimologia , Intestinos/fisiologia , Densidade Demográfica , Probióticos/administração & dosagem , Distribuição Aleatória
2.
Br J Nutr ; 113(12): 1876-87, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-25990817

RESUMO

Se is an essential micronutrient required for normal growth, development and antioxidant defence. The objective of the present study was to assess the impact of dietary Se sources and levels on the antioxidant status of rainbow trout (Oncorhynchus mykiss) fry. First-feeding fry (initial body weight: 91 mg) were fed either a plant- or fishmeal-based diet containing 0·5 or 1·2 mg Se/kg diet supplemented or not with 0·3 mg Se/kg diet supplied as Se-enriched yeast or sodium selenite for 12 weeks at 17°C. Growth and survival of rainbow trout fry were not significantly affected by dietary Se sources and levels. Whole-body Se was raised by both Se sources and to a greater extent by Se-yeast. The reduced:oxidised glutathione ratio was raised by Se-yeast, whereas other lipid peroxidation markers were not affected by dietary Se. Whole-body Se-dependent glutathione peroxidase (GPX) activity was enhanced in fish fed Se-yeast compared to fish fed sodium selenite or non-supplemented diets. Activity and gene expression of this enzyme as well as gene expression of selenoprotein P (SelP) were reduced in fish fed the non-supplemented plant-based diet. Catalase, glutamate-cysteine ligase and nuclear factor-erythroid 2-related factor 2 (Nrf2) gene expressions were reduced by Se-yeast. These results suggest the necessity to supplement plant-based diets with Se for rainbow trout fry, and highlight the superiority of organic form of Se to fulfil the dietary Se requirement and sustain the antioxidant status of fish. GPX and SelP expression proved to be good markers of Se status in fish.


Assuntos
Antioxidantes/análise , Dieta/veterinária , Oncorhynchus mykiss/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Selênio/administração & dosagem , Animais , Composição Corporal , Suplementos Nutricionais , Ácidos Graxos/análise , Expressão Gênica/efeitos dos fármacos , Glutationa/análise , Glutationa/química , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos , Necessidades Nutricionais , Oncorhynchus mykiss/embriologia , Oncorhynchus mykiss/crescimento & desenvolvimento , Selenoproteínas/genética , Selenito de Sódio
3.
PLoS One ; 10(12): e0145448, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26696403

RESUMO

Yeast is frequently used as a probiotic in aquaculture with the potential to substitute for antibiotics. In this study, the involvement and extent to which the viability of yeast cells and thus the secretory metabolites released from the yeast contribute to effects of baker's yeast was investigated in Nile tilapia. No yeast, live yeast or heat-inactivated baker's yeast were added to basal diets high in fishmeal and low in soybean (diet A) or low in fishmeal and high in soybean (diet B), which were fed to fish for 8 weeks. Growth, feed utilization, gut microvilli morphology, and expressions of hsp70 and inflammation-related cytokines in the intestine and head kidney were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Gut alkaline phosphatase (AKP) activity was measured after challenging the fish with Aeromonas hydrophila. Results showed that live yeast significantly improved FBW and WG (P < 0.05), and tended to improve FCR (P = 0.06) of fish compared to the control (no yeast). No significant differences were observed between inactivated yeast and control. Live yeast improved gut microvilli length (P < 0.001) and density (P < 0.05) while inactivated yeast did not. The hsp70 expression level in both the intestine and head kidney of fish was significantly reduced by live yeast (P < 0.05) but not inactivated yeast. Live yeast but not inactivated yeast reduced intestinal expression of tnfα (P < 0.05), tgfß (P < 0.05 under diet A) and il1ß (P = 0.08). Intestinal Lactococcus spp. numbers were enriched by both live and inactivated yeast. Lastly, both live and inactivated yeast reduced the gut AKP activity compared to the control (P < 0.001), indicating protection of the host against infection by A. hydrophila. In conclusion, secretory metabolites did not play major roles in the growth promotion and disease protection effects of yeast. Nevertheless, secretory metabolites were the major contributing factor towards improved gut microvilli morphology, relieved stress status, and reduced intestinal inflammation of Nile tilapia fed diets supplemented with baker's yeast.


Assuntos
Ciclídeos/microbiologia , Probióticos/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Aeromonas hydrophila/patogenicidade , Fosfatase Alcalina/metabolismo , Animais , Pesqueiros , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Intestinos/microbiologia , RNA Ribossômico 16S/análise , Análise de Sequência de RNA/métodos
4.
J Agric Food Chem ; 63(28): 6484-92, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26161943

RESUMO

Two forms of selenium (Se) supplementation of fish feeds were compared in two different basal diets. A 12-week feeding trial was performed with rainbow trout fry using either a plant-based or a fish meal-based diet. Se yeast and selenite were used for Se supplementation. Total Se and Se speciation were determined in both diets and whole body of trout fry using inductively coupled plasma mass spectrometry (ICP MS) and high-performance liquid chromatography (HPLC). The two selenoamino acids, selenomethionine (SeMet) and selenocysteine (SeCys), were determined in whole body of fry after enzymatic digestion using protease type XIV with a prior derivatization step in the case of SeCys. The plant-based basal diet was found to have a much lower total Se than the fish meal-based basal diet with concentrations of 496 and 1222 µg(Se) kg(-1), respectively. Dietary Se yeast had a higher ability to raise whole body Se compared to selenite. SeMet concentration in the fry was increased only in the case of Se yeast supplementation, whereas SeCys levels were similar at the end of the feeding trial for both Se supplemented forms. The results show that the fate of dietary Se in fry is highly dependent on the form brought through supplementation and that a plant-based diet clearly benefits from Se supplementation.


Assuntos
Dieta/veterinária , Oncorhynchus mykiss/metabolismo , Selênio/administração & dosagem , Selenocisteína/análise , Selenometionina/análise , Animais , Cromatografia Líquida de Alta Pressão , Suplementos Nutricionais , Produtos Pesqueiros , Espectrometria de Massas , Plantas , Ácido Selenioso/administração & dosagem
6.
J Exp Zool A Comp Exp Biol ; 305(7): 576-93, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16615099

RESUMO

Vitellogenin (VTG) of Oreochromis niloticus was again purified, due to the conflicting results found in the literature. Three purification processes have been used: electrophoresis and electro-elution, double chromatography (gel filtration and ion-exchange chromatography) and single ion-exchange chromatography. Using SDS-PAGE we confirmed in all cases the presence of two polypeptidic forms of plasma VTG of 130 kDa (VTG1) and 170 kDa (VTG2). We raised polyclonal antibodies against each VTG form and we demonstrated the complete cross-reactivity of each antibody with both forms of VTG by Enzyme Immuno-Assay (EIA) and Western blots. The homologous ELISAs developed exhibited a detection limit of 6 ng x ml(-1), equivalent to 60 ng x ml(-1) of plasma VTG and allowed us to quantify the total plasma VTG of O. niloticus with high specificity and sensitivity. Using photonic and electron immunomicroscopy, we followed the pathway of VTG into the ovarian follicle (OF) demonstrating that VTG enters the oocyte at stage 3 of OF development, at the same time as cortical alveoli and lipid globules appear. Heterologous ELISAs performed on other cichlid species allowed us to quantify plasma VTG in Oreochromis aureus and Sarotherodon melanotheron and to detect it in Hemichromis fasciatus, Hemichromis bimaculatus and Tilapia zillii, constituting a reliable tool for monitoring the presence of xeno-estrogens in the environment of these fish species.


Assuntos
Ciclídeos/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Proteínas de Peixes/análise , Proteínas de Peixes/metabolismo , Folículo Ovariano/metabolismo , Vitelogeninas/análise , Vitelogeninas/metabolismo , Animais , Eletroforese , Feminino , Proteínas de Peixes/química , Regulação da Expressão Gênica , Imunoquímica , Masculino , Folículo Ovariano/ultraestrutura , Vitelogeninas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA