Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Vet Radiol Ultrasound ; 63(1): 8-17, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34528738

RESUMO

Cardiac disease in guinea pigs has been reported in the literature; however, reference intervals for normal radiographic heart size obtained using objective measurement methods have not been provided for this species. The aim of this prospective, reference interval study was to describe cardiac dimensions in presumed healthy guinea pigs using the vertebral heart scale (VHS) from thoracic radiographs, as described for dogs and cats. Furthermore, an anatomical study was carried out to compare the radiographic and anatomical findings. Thoracic radiographs were acquired in right lateral recumbency for 30, client-owned, conscious, presumed healthy guinea pigs and radiographs were acquired in left lateral recumbency for 10 presumed healthy guinea pigs as comparisons. The influence of sex, age, body weight (BW), and recumbency on the VHS and absolute cardiac measurements was investigated. The median (interquartile range; IQR) VHS was 7.4 (7.1-7.6). No differences emerged between the VHS measured in right versus left lateral recumbency (P = .41) or between sexes (P = .16). The VHS values were not influenced by age (P = .53) or BW (P = .26). The anatomical study was carried out on 10 guinea pig cadavers, and in situ and ex situ cardiac measurements were taken using a caliper. A median (IQR) 7.5 (7.2-8.0) VHS was assessed by this anatomical study. The reference intervals provided should be useful tools in the future for the radiographic interpretation of cardiac size in guinea pigs in clinical practice.


Assuntos
Doenças do Gato , Doenças do Cão , Animais , Gatos , Cães , Cobaias , Coração/diagnóstico por imagem , Estudos Prospectivos , Radiografia Torácica
2.
J Anat ; 238(4): 942-955, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33099774

RESUMO

Vibrissae are tactile hairs found mainly on the rostrum of most mammals. The follicle, which is surrounded by a large venous sinus, is called "follicle-sinus complex" (FSC). This complex is highly innervated by somatosensitive fibers and reached by visceromotor fibers that innervate the surrounding vessels. The surrounding striated muscles receive somatomotor fibers from the facial nerve. The bottlenose dolphin (Tursiops truncatus), a frequently described member of the delphinid family, possesses this organ only in the postnatal period. However, information on the function of the vibrissal complex in this latter species is scarce. Recently, psychophysical experiments on the river-living Guiana dolphin (Sotalia guianensis) revealed that the FSC could work as an electroreceptor in murky waters. In the present study, we analyzed the morphology and innervation of the FSC of newborn (n = 8) and adult (n = 3) bottlenose dolphins. We used Masson's trichrome stain and antibodies against neurofilament 200 kDa (NF 200), protein gene product (PGP 9.5), substance P (SP), calcitonin gene-related peptide, and tyrosine hydroxylase (TH) to characterize the FSC of the two age classes. Masson's trichrome staining revealed a structure almost identical to that of terrestrial mammals except for the fact that the FSC was occupied only by a venous sinus and that the vibrissal shaft lied within the follicle. Immunostaining for PGP 9.5 and NF 200 showed somatosensory fibers finishing high along the follicle with Merkel nerve endings and free nerve endings. We also found SP-positive fibers mostly in the surrounding blood vessels and TH both in the vessels and in the mesenchymal sheath. The FSC of the bottlenose dolphin, therefore, possesses a rich somatomotor innervation and a set of peptidergic visceromotor fibers. This anatomical disposition suggests a mechanoreceptor function in the newborns, possibly finalized to search for the opening of the mother's nipples. In the adult, however, this structure could change into a proprioceptive function in which the vibrissal shaft could provide information on the degree of rotation of the head. In the absence of psychophysical experiments in this species, the hypothesis of electroreception cannot be rejected.


Assuntos
Golfinho Nariz-de-Garrafa/anatomia & histologia , Vibrissas/inervação , Animais , Animais Recém-Nascidos , Evolução Biológica , Golfinho Nariz-de-Garrafa/crescimento & desenvolvimento , Feminino , Masculino , Vibrissas/crescimento & desenvolvimento
3.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946328

RESUMO

Serotonin (5-HT) is important in some nicotine actions in the CNS. Among all the 5-HT receptors (5-HTRs), the 5-HT2CR has emerged as a promising drug target for smoking cessation. The 5-HT2CRs within the lateral habenula (LHb) may be crucial for nicotine addiction. Here we showed that after acute nicotine tartrate (2 mg/kg, i.p.) exposure, the 5-HT2CR agonist Ro 60-0175 (5-640 µg/kg, i.v.) increased the electrical activity of 42% of the LHb recorded neurons in vivo in rats. Conversely, after chronic nicotine treatment (6 mg/kg/day, i.p., for 14 days), Ro 60-0175 was incapable of affecting the LHb neuronal discharge. Moreover, acute nicotine exposure increased the 5-HT2CR-immunoreactive (IR) area while decreasing the number of 5-HT2CR-IR neurons in the LHb. On the other hand, chronic nicotine increased both the 5-HT2CR-IR area and 5-HT2CR-IR LHb neurons in the LHb. Western blot analysis confirmed these findings and further revealed an increase of 5-HT2CR expression in the medial prefrontal cortex after chronic nicotine exposure not detected by the immunohistochemistry. Altogether, these data show that acute and chronic nicotine exposure differentially affect the central 5-HT2CR function mainly in the LHb and this may be relevant in nicotine addiction and its treatment.


Assuntos
Habenula/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Receptor 5-HT2C de Serotonina/metabolismo , Animais , Etilaminas/administração & dosagem , Etilaminas/farmacologia , Habenula/fisiologia , Indóis/administração & dosagem , Indóis/farmacologia , Masculino , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Agonistas do Receptor 5-HT2 de Serotonina/administração & dosagem , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia
4.
Histochem Cell Biol ; 153(5): 339-356, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32095931

RESUMO

A growing body of literature indicates that activation of cannabinoid receptors may exert beneficial effects on gastrointestinal inflammation and visceral hypersensitivity. The present study aimed to immunohistochemically investigate the distribution of the canonical cannabinoid receptors CB1 (CB1R) and CB2 (CB2R) and the putative cannabinoid receptors G protein-coupled receptor 55 (GPR55), nuclear peroxisome proliferator-activated receptor alpha (PPARα), transient receptor potential ankyrin 1 (TRPA1), and serotonin receptor 5-HT1a 5-HT1aR) in tissue samples of the gastrointestinal tract of the cat. CB1R-immunoreactivity (CB1R-IR) was observed in gastric epithelial cells, intestinal enteroendocrine cells (EECs) and goblet cells, lamina propria mast cells (MCs), and enteric neurons. CB2R-IR was expressed by EECs, enterocytes, and macrophages. GPR55-IR was expressed by EECs, macrophages, immunocytes, and MP neurons. PPARα-IR was expressed by immunocytes, smooth muscle cells, and enteroglial cells. TRPA1-IR was expressed by enteric neurons and intestinal goblet cells. 5-HT1a receptor-IR was expressed by gastrointestinal epithelial cells and gastric smooth muscle cells. Cannabinoid receptors showed a wide distribution in the feline gastrointestinal tract layers. Although not yet confirmed/supported by functional evidences, the present research might represent an anatomical substrate potentially useful to support, in feline species, the therapeutic use of cannabinoids during gastrointestinal inflammatory diseases.


Assuntos
Canabinoides/análise , Trato Gastrointestinal/química , Receptores de Canabinoides/análise , Animais , Gatos
5.
Int J Mol Sci ; 21(5)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182934

RESUMO

Nicotine addiction is a serious public health problem causing millions of deaths worldwide. Serotonin (5-hydroxytryptamine; 5-HT) is involved in central nervous system (CNS) nicotine effects, and it has been suggested as a promising pharmacological target for smoking cessation. In this regard, what is particularly interesting are the 5-HT2A receptors (5-HT2ARs) and the lateral habenula (LHb), a central area in nicotine addiction that we showed to be under a strong 5-HT2AR-modulation. Single-cell extracellular recording of LHb neurons was used to study the 5-HT2AR function by intravenously administrating the potent agonist TCB-2. Acute nicotine (2 mg/kg, intraperitoneal, i.p.) and chronic nicotine (6 mg/kg/day for 14 days) differently affected both the 5-HT2AR-immuno reactive (IR) neuron number and the 5-HT2AR immunostaining area in the different brain areas studied. After acute nicotine, TCB-2 cumulative doses (5-640 µg/kg, intravenous, i.v.) bidirectionally affected the activity of 74% of LHb recorded neurons. After chronic nicotine treatment, TCB-2 was only capable of decreasing the LHb firing rate. The expression of 5-HT2AR under acute and chronic nicotine exposure was studied in the LHb and in other brain areas involved in nicotine effects in rats by using immunohistochemistry. These data reveal that acute and chronic nicotine differentially affect the 5-HT2AR function in different brain areas and this might be relevant in nicotine addiction and its treatment.


Assuntos
Habenula/efeitos dos fármacos , Nicotina/efeitos adversos , Receptor 5-HT2A de Serotonina/metabolismo , Animais , Habenula/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo
6.
Front Neuroanat ; 18: 1321025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379680

RESUMO

Introduction: The entorhinal cortex has been shown to be involved in high-level cognitive functions in terrestrial mammals. It can be divided into two main areas: the lateral entorhinal area (LEA) and the medial entorhinal area (MEA). Understanding of its structural organization in cetaceans is particularly important given the extensive evidence for their cognitive abilities. The present study describes the cytoarchitectural and immunohistochemical properties of the entorhinal cortex of the bottlenose dolphin (Tursiops truncatus, Montagu, 1821), perhaps the most studied cetacean species and a paradigm for dolphins and other small cetaceans. Methods: Four bottlenose dolphins' entorhinal cortices were processed. To obtain a precise overview of the organization of the entorhinal cortex we used thionin staining to study its laminar and regional organization, and immunoperoxidase technique to investigate the immunohistochemical distribution of three most commonly used calcium-binding proteins (CBPs), calbindin D-28k (CB), calretinin (CR) and parvalbumin (PV). Entorhinal cortex layers thickness were measured, morphological and morphometric analysis for each layer were conducted and statistically compared. Results: Six layers in both the LEA and MEA were identified. The main difference between the LEA and the MEA is observed in layers II and III: the neurons in layer II of the LEA were denser and larger than the neurons in layer II of MEA. In addition, a relatively cell-free zone between layers II and III in LEA, but not in MEA, was observed. The immunohistochemical distribution of the three CBPs, CB, CR and PV were distinct in each layer. The immunostaining pattern of CR, on one side, and CB/PV, on the other side, appeared to be distributed in a complementary manner. PV and CB immunostaining was particularly evident in layers II and III, whereas CR immunoreactive neurons were distributed throughout all layers, especially in layers V and VI. Immunoreactivity was expressed by neurons belonging to different morphological classes: All CBPs were expressed in non-pyramidal neurons, but CB and CR were also found in pyramidal neurons. Discussion: The morphological characteristics of pyramidal and non-pyramidal neurons in the dolphin entorhinal cortex are similar to those described in the entorhinal cortex of other species, including primates and rodents. Interestingly, in primates, rodents, and dolphins, most of the CBP-containing neurons are found in the superficial layers, but the large CR-ir neurons are also abundant in the deep layers. Layers II and III of the entorhinal cortex contain neurons that give rise to the perforant pathway, which conveys most of the cortical information to the hippocampal formation. From the hippocampal formation, reciprocal projections are directed back to the deep layer of the entorhinal cortex, which distributes the information to the neocortex and subcortical area. Our data reveal that in the dolphin entorhinal cortex, the three major CBPs label morphologically heterogeneous groups of neurons that may be involved in the information flow between entorhinal input and output pathways.

7.
Equine Vet J ; 54(1): 167-175, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33555625

RESUMO

BACKGROUND: The morphometric studies of the atrioventricular valves are still limited in the horse. OBJECTIVES: To investigate the anatomy of the atrioventricular valves in the horse, focusing on the morphometric features of the valvular leaflets and the tendinous cords. We hypothesised that accessory leaflets occur commonly and exist as independent structures in the atrioventricular valves of the horse. STUDY DESIGN: Descriptive anatomical study. METHODS: Twenty normal hearts from slaughtered half-bred horses were used. The cardiac weight and circumference were recorded. The atrioventricular valves were exposed by excision of the atria, and the tricuspid and mitral annular diameters and circumferences were measured; the number of leaflets and tendinous cords for each atrioventricular ostium were then counted. The atrioventricular valves were isolated and the width, height and thickness of each leaflet were measured. RESULTS: In addition to the principal leaflets, accessory leaflets were identified in 39 of 40 cardiac valves, 2 to 6 accessory leaflets for the mitral valve and 1 to 4 for the tricuspid valve. All the accessory leaflets were separated from the adjacent leaflets at their insertion. They were narrower and thinner than the principal leaflets, and were attached to a single papillary muscle; 95% of the accessory leaflets had two tendinous cords shared with the adjacent leaflets while a minority (34%) had their own specific tendinous cord. MAIN LIMITATIONS: Lack of signalment data from the study population. CONCLUSIONS: Supernumerary leaflets occurred commonly in the atrioventricular valves of the horse and appeared as independent structures. The clinical relevance of increased numbers of commissures that result from accessory leaflets and their relationship with valvular regurgitation are currently unknown.


Assuntos
Valva Mitral , Valva Tricúspide , Animais , Átrios do Coração , Cavalos
8.
Animals (Basel) ; 12(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36009622

RESUMO

Visual information is processed in the optic lobes, which consist of three retinotopic neuropils. These are the lamina, the medulla and the lobula. Biogenic amines play a crucial role in the control of insect responsiveness, and serotonin is clearly related to aggressiveness in invertebrates. Previous studies suggest that serotonin modulates aggression-related behaviours, possibly via alterations in optic lobe activity. The aim of this investigation was to immunohistochemically localize the distribution of serotonin transporter (SERT) in the optic lobe of moderate, docile and aggressive worker honeybees. SERT-immunoreactive fibres showed a wide distribution in the lamina, medulla and lobula; interestingly, the highest percentage of SERT immunoreactivity was observed across all the visual neuropils of the docile group. Although future research is needed to determine the relationship between the distribution of serotonin fibres in the honeybee brain and aggressive behaviours, our immunohistochemical study provides an anatomical basis supporting the role of serotonin in aggressive behaviour in the honeybee.

9.
Front Vet Sci ; 9: 915896, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873682

RESUMO

It is commonly accepted that some form of skin barrier dysfunction is present in canine atopic dermatitis (AD), one of the most common cutaneous pruritic inflammatory diseases of dogs. The impaired skin barrier function facilitates the penetration of allergens and subsequently stronger sensitization responses. The role of the endocannabinoid system (ECS) in the physiology and pathology of the skin is becoming increasingly established. It has been demonstrated that cannabinoid receptors are expressed in healthy and diseased skin and, based on current knowledge, it could be stated that cannabinoids are important mediators in the skin. The present study has been designed to immunohistochemically investigate the expression of the cannabinoid receptors type 1 (CB1R) and 2 (CB2R) and the cannabinoid-related receptors G protein-coupled receptor 55 (GPR55), transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), peroxisome proliferator-activated receptors alpha (PPARα), and serotoninergic receptor 1a (5-HT1aR) in keratinocytes of healthy dogs and of dogs with AD. Samples of skin tissues were collected from 7 healthy controls (CTRL-dogs) and from 8 dogs with AD (AD-dogs). The tissue samples were processed using an immunofluorescence assay with commercially available antibodies, and the immunolabelling of the receptors studied was quantitatively evaluated. The keratinocytes of the CTRL- and the AD-dogs showed immunoreactivity for all the receptors investigated with a significant upregulation of CB2R, TRPA1, and 5-HT1aR in the epidermis of the AD-dogs. The presence of cannabinoid and cannabinoid-related receptors in healthy keratinocytes suggested the possible role of the ECS in canine epidermal homeostasis while their overexpression in the inflamed tissues of the AD-dogs suggested the involvement of the ECS in the pathogenesis of this disease, having a possible role in the related skin inflammation and itching. Based on the present findings, the ECS could be considered a potential therapeutic target for dogs with AD.

10.
Front Vet Sci ; 9: 987132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187821

RESUMO

Background: Atopic dermatitis (AD) is one of the most common cutaneous inflammatory and pruritic diseases in dogs. Considering its multifactorial nature, AD can be a challenging disease to manage, and the therapeutic strategy must often be multimodal. In recent years, research has been moving toward the use of natural products which have beneficial effects on inflammation and itching, and no side effects. Cannabinoid receptors have been demonstrated to be expressed in healthy and diseased skin; therefore, one of the potential alternative therapeutic targets for investigating AD is the endocannabinoid system (ECS). Objective: To immunohistochemically investigate the expression of the cannabinoid receptor type 2 (CB2R), and the cannabinoid-related receptors G protein-coupled receptor 55 (GPR55), transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) in mast cells (MCs), macrophages, dendritic cells (DCs), T cells, and neutrophils of the skin of dogs with AD. Animals: Samples of skin tissues were collected from eight dogs with AD (AD-dogs). Materials and methods: The immunofluorescent stained cryosections of the skins of 8 dogs with AD having antibodies against CB2R, GPR55, TRPV1, TRPA1 were semiquantitatively evaluated. The inflammatory cells were identified using antibodies against tryptase (mast cells), ionized calcium binding adaptor molecule 1 (IBA1) (macrophages/DCs), CD3 (T cells), and calprotectin (neutrophils). The proportions of MCs, macrophages/DCs, T cells, and neutrophils expressing CB2R, GPR55, TRPV1 and TRPA1 were evaluated. Results: The cells of the inflammatory infiltrate showed immunoreactivity (IR) for all or for some of the cannabinoid and cannabinoid-related receptors studied. In particular, MCs and macrophages/DCs showed CB2R-, GPR55-, TRPA1-, and TRPV1-IR; T cells showed CB2R-, GPR55- and TRPA1-IR, and neutrophils expressed GPR55-IR. Co-localization studies indicated that CB2R-IR was co-expressed with TRPV1-, TRPA1-, and GPR55-IR in different cellular elements of the dermis of the AD-dogs. Conclusions and clinical importance: Cannabinoid receptor 2, and cannabinoid-related receptors GPR55, TRPV1 and TRPA1 were widely expressed in the inflammatory infiltrate of the AD-dogs. Based on the present findings, the ECS could be considered to be a potential therapeutic target for dogs with AD, and may mitigate itch and inflammation.

11.
Animals (Basel) ; 11(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494452

RESUMO

An important piece of evidence has shown that molecules acting on cannabinoid receptors influence gastrointestinal motility and induce beneficial effects on gastrointestinal inflammation and visceral pain. The aim of this investigation was to immunohistochemically localize the distribution of canonical cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) and the cannabinoid-related receptors transient potential vanilloid receptor 1 (TRPV1), transient potential ankyrin receptor 1 (TRPA1), and serotonin receptor 5-HT1a (5-HT1aR) in the myenteric plexus (MP) of pig ileum. CB1R, TRPV1, TRPA1, and 5-HT1aR were expressed, with different intensities in the cytoplasm of MP neurons. For each receptor, the proportions of the immunoreactive neurons were evaluated using the anti-HuC/HuD antibody. These receptors were also localized on nerve fibers (CB1R, TRPA1), smooth muscle cells of tunica muscularis (CB1R, 5-HT1aR), and endothelial cells of blood vessels (TRPV1, TRPA1, 5-HT1aR). The nerve varicosities were also found to be immunoreactive for both TRPV1 and 5-HT1aR. No immunoreactivity was documented for CB2R. Cannabinoid and cannabinoid-related receptors herein investigated showed a wide distribution in the enteric neurons and nerve fibers of the pig MP. These results could provide an anatomical basis for additional research, supporting the therapeutic use of cannabinoid receptor agonists in relieving motility disorders in porcine enteropathies.

12.
Front Vet Sci ; 8: 802479, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071391

RESUMO

Serotonin is crucial in gastrointestinal functions, including motility, sensitivity, secretion, and the inflammatory response. The serotonin transporter (SERT), responsible for serotonin reuptake and signaling termination, plays a prominent role in gastrointestinal physiology, representing a promising therapeutic target in digestive disorders. Serotonin transporter expression has been poorly investigated in veterinary medicine, under both healthy and pathological conditions, including canine chronic enteropathy, in which the serotonin metabolism seems to be altered. The aim of the present study was to determine the distribution of SERT immunoreactivity (SERT-IR) in the dog intestine and to compare the findings with those obtained in the rat and human intestines. Serotonin transporter-IR was observed in canine enterocytes, enteric neurons, lamina propria cells and the tunica muscularis. Data obtained in dogs were consistent with those obtained in rats and humans. Since the majority of the serotonin produced by the body is synthesized in the gastrointestinal tract, SERT-expressing cells may exert a role in the mechanism of serotonin reuptake.

13.
Animals (Basel) ; 11(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205601

RESUMO

The aims of the present study were to compare the percentages of articular cartilage removed using a lateral drilling approach of the proximal interphalangeal joint (PIPJ) and a dorsal drilling approach, and to assess the usefulness of digital fluoroscopy when performing a lateral drilling approach. Sixty cadaveric PIPJs were drilled using a surgical drill bit to remove the articular cartilage. The limbs were divided into three groups containing 10 forelimbs and 10 hindlimbs each. One group received the dorsal drilling approach, the second one received the lateral drilling approach and the last one received the lateral drilling approach under digital fluoroscopy guidance. The percentage of articular cartilage removed from each articular surface was assessed using Adobe Photoshop ® software. The percentages of removed cartilage turned out to be significantly higher with lateral approach, especially under fluoroscopic guidance, both in the forelimbs (p = 0.00712) and hindlimbs (p = 0.00962). In conclusion, the lateral drilling approach seems to be a minimally invasive technique with which to perform PIPJ arthrodesis, even more efficient than the previously reported dorsal approach.

14.
Equine Vet J ; 53(3): 549-557, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32524649

RESUMO

BACKGROUND: Growing evidence recognises cannabinoid receptors as potential therapeutic targets for pain. Consequently, there is increasing interest in developing cannabinoid receptor agonists for treating pain. As a general rule, to better understand the actions of a drug, it would be of extreme importance to know the cellular distribution of its specific receptors. The localisation of cannabinoid receptors in the dorsal root ganglia of the horse has not yet been investigated. OBJECTIVES: To localise the cellular distribution of canonical and putative cannabinoid receptors in the equine cervical dorsal root ganglia. STUDY DESIGN: Qualitative and quantitative immunohistochemical study. METHODS: Cervical (C6-C8) dorsal root ganglia were collected from six horses (1.5 years of age) at the slaughterhouse. The tissues were fixed and processed to obtain cryosections which were used to investigate the immunoreactivity of canonical cannabinoid receptors 1 (CB1R) and 2 (CB2R), and for three putative cannabinoid-related receptors: nuclear peroxisome proliferator-activated receptor alpha (PPARα), transient receptor potential ankyrin 1 (TRPA1) and serotonin 5-HT1a receptor (5-HT1aR). RESULTS: The neurons showed immunoreactivity for CB1R (100%), CB2R (80% ± 13%), PPARα (100%), TRPA1 (74% ± 10%) and 5-HT1aR (84% ± 6%). The neuronal satellite glial cells showed immunoreactivity for CB2R, PPARα, TRPA1 and 5-HT1aR. MAIN LIMITATIONS: The low number of horses included in the study. CONCLUSIONS: This study highlighted the expression of cannabinoid receptors in the sensory neurons and glial cells of the dorsal root ganglia. These findings could be of particular relevance for future functional studies assessing the effects of cannabinoids in horses to manage pain.


Assuntos
Canabinoides , Animais , Gânglios Espinais , Cavalos , Neurônios , Dor/veterinária , Receptores de Canabinoides
15.
Vet Res Commun ; 45(2-3): 87-99, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33866493

RESUMO

The presence of the lateral cervical nucleus (LCN) in different mammals, including humans, has been established in a number of anatomical research works. The LCN receives its afferent inputs from the spinocervical tract, and conveys this somatosensory information to the various brain areas, especially the thalamus. In the present study, the organization of the calf and pig LCN was examined through the use of thionine staining and immunohistochemical methods combined with morphometrical analyses. Specifically, the localization of calbindin-D28k (CB-D28k) and neuronal nitric oxide synthase (nNOS) in the LCN was investigated using the immunoperoxidase method. Calf and pig LCN appear as a clearly defined column of gray matter located in the three cranial segments of the cervical spinal cord. Thionine staining shows that polygonal neurons represent the main cell type in both species. The calf and pig LCN contained CB-D28k-immunoreactive (IR) neurons of varying sizes. Large neurons are probably involved in the generation of the cervicothalamic pathway. Small CB-D28k-IR neurons, on the other hand, could act as local interneurons. The immunoreactivity for nNOS was found to be mainly located in thin neuronal processes that could represent the terminal axonal portion of nNOS-IR found in laminae III e IV. This evidence suggests that nitric oxide (NO) could modulate the synaptic activity of the glutamatergic spinocervical tracts. These findings suggest that the LCN of Artiodactyls might play an important role in the transmission of somatosensory information from the spinal cord to the higher centers of the brain.


Assuntos
Bovinos/anatomia & histologia , Substância Cinzenta/anatomia & histologia , Sus scrofa/anatomia & histologia , Animais , Bovinos/metabolismo , Substância Cinzenta/enzimologia , Masculino , Óxido Nítrico Sintase Tipo I/metabolismo , Fenotiazinas/química , Sus scrofa/metabolismo
16.
Anat Rec (Hoboken) ; 304(2): 372-383, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32396681

RESUMO

The arterial supply of the cat jejunum was studied by gross dissection and polyurethane corrosion cast. The results showed that the jejunal arteries, which originate from the cranial mesenteric artery, varied from 5 to 15 in number. Their number was independent of the length of the cranial mesenteric artery as well as of the length of the jejunum. These arteries divided into branches giving rise to a series of orders of division from a minimum of 1 to a maximum of 7. The last orders of division terminated in a series of anastomosing arcades which resulted in a marginal artery coursing only a few millimeters from the mesenteric margin of the jejunum. This artery gave rise to straight arteries (vasa recta), whose mean number was 450 ± 60. According to their length, the vasa recta can be differentiated into short (vasa brevia) and long (vasa longa) branches. The vasa brevia ended branching into the mesenteric side of the jejunum whereas the vasa longa coursed beneath the serosa on the lateral jejunal surfaces, and reached the antimesenteric border. During their course, the vasa recta ramified and anastomosed with each other. Numerous antimesenteric anastomoses between opposing vasa longa were also observed. Based on the literature consulted, due to the large number of vasa recta (approximately one vessel per 2.9 mm of jejunal length) and the rich anastomotic network, the cat jejunum might have a better intramural distribution of blood flow and would seem less predisposed to ischemic phenomena than that of other mammals.


Assuntos
Gatos/anatomia & histologia , Jejuno/irrigação sanguínea , Artérias Mesentéricas/anatomia & histologia , Animais
17.
Animals (Basel) ; 11(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34944178

RESUMO

The current work was designed to assess the effect of feed supplemented with essential oils (EOs) on the histological features in sea bass's gastric mucosa. Fish were fed three diets: control diet (CTR), HERBAL MIX® made with natural EOs (N-EOs), or HERBAL MIX® made with artificial EOs obtained by synthesis (S-EOs) during a 117-day feeding trial. Thereafter, the oxyntopeptic cells (OPs) and the ghrelin (GHR) and somatostatin (SOM) enteroendocrine cells (EECs) in the gastric mucosa were evaluated. The Na+K+-ATPase antibody was used to label OPs, while, for the EECs, anti-SOM and anti-GHR antibody were used. The highest density of OP immunoreactive (IR) area was in the CTR group (0.66 mm2 ± 0.1). The OP-IR area was reduced in the N-EO diet group (0.22 mm2 ± 1; CTR vs. N-EOs, p < 0.005), while in the S-EO diet group (0.39 mm2 ± 1) a trend was observed. We observed an increase of the number of SOM-IR cells in the N-EO diet (15.6 ± 4.2) compared to that in the CTR (11.8 ± 3.7) (N-EOs vs. CTR; p < 0.05), but not in the S-EOs diet. These observations will provide a basis to advance current knowledge on the anatomy and digestive physiology of this species in relation to pro-heath feeds.

18.
J Equine Vet Sci ; 104: 103688, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34416995

RESUMO

Colic is a common digestive disorder in horses and one of the most urgent problems in equine medicine. A growing body of literature has indicated that the activation of cannabinoid receptors could exert beneficial effects on gastrointestinal inflammation and visceral hypersensitivity. The localisation of cannabinoid and cannabinoid-related receptors in the intestine of the horse has not yet been investigated. The purpose of this study was to immunohistochemically localise the cellular distribution of canonical and putative cannabinoid receptors in the ileum of healthy horses. Distal ileum specimens were collected from six horses at the slaughterhouse. The tissues were fixed and processed to obtain cryosections which were used to investigate the immunoreactivity of canonical cannabinoid receptors 1 (CB1R) and 2 (CB2R), and three putative cannabinoid-related receptors: nuclear peroxisome proliferator-activated receptor-alpha (PPARα), transient receptor potential ankyrin 1 and serotonin 5-HT1a receptor (5-HT1aR). Cannabinoid and cannabinoid-related receptors showed a wide distribution in the ileum of the horse. The epithelial cells showed immunoreactivity for CB1R, CB2R and 5-HT1aR. Lamina propria inflammatory cells showed immunoreactivity for CB2R and 5-HT1aR. The enteric neurons showed immunoreactivity for CB1R, transient receptor potential ankyrin 1 and PPARα. The enteric glial cells showed immunoreactivity for CB1R and PPARα. The smooth muscle cells of the tunica muscularis and the blood vessels showed immunoreactivity for PPARα. The present study represents a histological basis which could support additional studies regarding the distribution of cannabinoid receptors during gastrointestinal inflammatory diseases as well as studies assessing the effects of non-psychotic cannabis-derived molecules in horses for the management of intestinal diseases.


Assuntos
Canabinoides , Cannabis , Animais , Trato Gastrointestinal , Cavalos , Íleo , Receptores de Canabinoides
20.
Front Vet Sci ; 6: 313, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608295

RESUMO

Growing evidence indicates cannabinoid receptors as potential therapeutic targets for chronic pain. Consequently, there is an increasing interest in developing cannabinoid receptor agonists for treating human and veterinary pain. To better understand the actions of a drug, it is of paramount importance to know the cellular distribution of its specific receptor(s). The distribution of canonical and putative cannabinoid receptors in the peripheral and central nervous system of dogs is still in its infancy. In order to help fill this anatomical gap, the present ex vivo study has been designed to identify the cellular sites of cannabinoid and cannabinoid-related receptors in canine spinal ganglia. In particular, the cellular distribution of the cannabinoid receptors type 1 and 2 (CB1 and CB2) and putative cannabinoid receptors G protein-coupled receptor 55 (GPR55), nuclear peroxisome proliferator-activated receptor alpha (PPARα), and transient receptor potential vanilloid type 1 (TRPV1) have been immunohistochemically investigated in the C6-C8 cervical ganglia of dogs. About 50% of the neuronal population displayed weak to moderate CB1 receptor and TRPV1 immunoreactivity, while all of them were CB2-positive and nearly 40% also expressed GPR55 immunolabeling. Schwann cells, blood vessel smooth muscle cells, and pericyte-like cells all expressed CB2 receptor immunoreactivity, endothelial cell being also PPARα-positive. All the satellite glial cells (SGCs) displayed bright GPR55 receptor immunoreactivity. In half of the study dogs, SGCs were also PPARα-positive, and limited to older dogs displayed TRPV1 immunoreactivity. The present study may represent a morphological substrate to consider in order to develop therapeutic strategies against chronic pain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA