Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mikrochim Acta ; 191(5): 250, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587660

RESUMO

Rapid technological advancements have created opportunities for new solutions in various industries, including healthcare. One exciting new direction in this field of innovation is the combination of skin-based technologies and augmented reality (AR). These dermatological devices allow for the continuous and non-invasive measurement of vital signs and biomarkers, enabling the real-time diagnosis of anomalies, which have applications in telemedicine, oncology, dermatology, and early diagnostics. Despite its many potential benefits, there is a substantial information vacuum regarding using flexible photonics in conjunction with augmented reality for medical purposes. This review explores the current state of dermal augmented reality and flexible optics in skin-conforming sensing platforms by examining the obstacles faced thus far, including technical hurdles, demanding clinical validation standards, and problems with user acceptance. Our main areas of interest are skills, chiroptical properties, and health platform applications, such as optogenetic pixels, spectroscopic imagers, and optical biosensors. My skin-enhanced spherical dichroism and powerful spherically polarized light enable thorough physical inspection with these augmented reality devices: diabetic tracking, skin cancer diagnosis, and cardiovascular illness: preventative medicine, namely blood pressure screening. We demonstrate how to accomplish early prevention using case studies and emergency detection. Finally, it addresses real-world obstacles that hinder fully realizing these materials' extraordinary potential in advancing proactive and preventative personalized medicine, including technical constraints, clinical validation gaps, and barriers to widespread adoption.


Assuntos
Realidade Aumentada , Pele , Medicina de Precisão , Eletrônica , Atenção à Saúde
2.
Environ Monit Assess ; 196(5): 438, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592580

RESUMO

Advanced sensor technology, especially those that incorporate artificial intelligence (AI), has been recognized as increasingly important in various contemporary applications, including navigation, automation, water under imaging, environmental monitoring, and robotics. Data-driven decision-making and higher efficiency have enabled more excellent infrastructure thanks to integrating AI with sensors. The agricultural sector is one such area that has seen significant promise from this technology using the Internet of Things (IoT) capabilities. This paper describes an intelligent system for monitoring and analyzing agricultural environmental conditions, including weather, soil, and crop health, that uses internet-connected sensors and equipment. This work makes two significant contributions. It first makes it possible to use sensors linked to the IoT to accurately monitor the environment remotely. Gathering and analyzing data over time may give us valuable insights into daily fluctuations and long-term patterns. The second benefit of AI integration is the remote control; it provides for essential activities like irrigation, pest management, and disease detection. The technology can optimize water usage by tracking plant development and health and adjusting watering schedules accordingly. Intelligent Control Systems (Matlab/Simulink Ver. 2022b) use a hybrid controller that combines fuzzy logic with standard PID control to get high-efficiency performance from water pumps. In addition to monitoring crops, smart cameras allow farmers to make real-time adjustments based on soil moisture and plant needs. Potentially revolutionizing contemporary agriculture, this revolutionary approach might boost production, sustainability, and efficiency.


Assuntos
Inteligência Artificial , Internet das Coisas , Computação em Nuvem , Monitoramento Ambiental , Agricultura , Inteligência , Solo , Água , Abastecimento de Água
3.
Appl Soft Comput ; 138: 110210, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36960080

RESUMO

The worldwide outbreak of COVID-19 disease was caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2). The existence of spike proteins, which allow these viruses to infect host cells, is one of the distinctive biological traits of various prior viruses. As a result, the process by which these viruses infect people is largely dependent on spike proteins. The density of SARS-CoV-2 spike proteins must be estimated to better understand and develop diagnostics and vaccines against the COVID-19 pandemic. CT scans and X-rays have three issues: frosted glass, consolidation, and strange roadway layouts. Each of these issues can be graded separately or together. Although CT scan is sensitive to COVID-19, it is not very specific. Therefore, patients who obtain these results should have more comprehensive clinical and laboratory tests to rule out other probable reasons. This work collected 586 SARS-CoV 2 transmission electron microscopy (TEM) images from open source for density estimation of virus spike proteins through a segmentation approach based on the superpixel technique. As a result, the spike density means of SARS-CoV2 and SARS-CoV were 21,97 nm and 22,45 nm, respectively. Furthermore, in the future, we aim to include this model in an intelligent system to enhance the accuracy of viral detection and classification. Moreover, we can remotely connect hospitals and public sites to conduct environmental hazard assessments and data collection.

4.
Appl Microbiol Biotechnol ; 106(9-10): 3321-3336, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35484414

RESUMO

The COVID-19, MERS-CoV, and SARS-CoV are hazardous epidemics that have resulted in many deaths which caused a worldwide debate. Despite control efforts, SARS-CoV-2 continues to spread, and the fast spread of this highly infectious illness has posed a grave threat to global health. The effect of the SARS-CoV-2 mutation, on the other hand, has been characterized by worrying variations that modify viral characteristics in response to the changing resistance profile of the human population. The repeated transmission of virus mutation indicates that epidemics are likely to occur. Therefore, an early identification system of ongoing mutations of SARS-CoV-2 will provide essential insights for planning and avoiding future outbreaks. This article discussed the following highlights: First, comparing the omicron mutation with other variants; second, analysis and evaluation of the spread rate of the SARS-CoV 2 variations in the countries; third, identification of mutation areas in spike protein; and fourth, it discussed the photonics approaches enabled with artificial intelligence. Therefore, our goal is to identify the SARS-CoV 2 virus directly without the need for sample preparation or molecular amplification procedures. Furthermore, by connecting through the optical network, the COVID-19 test becomes a component of the Internet of healthcare things to improve precision, service efficiency, and flexibility and provide greater availability for the evaluation of the general population. KEY POINTS: • A proposed framework of photonics based on AI for identifying and sorting SARS-CoV 2 mutations. • Comparative scatter rates Omicron variant and other SARS-CoV 2 variations per country. • Evaluating mutation areas in spike protein and AI enabled by photonic technologies for SARS-CoV 2 virus detection.


Assuntos
COVID-19 , SARS-CoV-2 , Inteligência Artificial , Humanos , Inteligência , Mutação , Óptica e Fotônica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
5.
Sensors (Basel) ; 20(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256085

RESUMO

Timely detection and diagnosis are essentially needed to guide outbreak measures and infection control. It is vital to improve healthcare quality in public places, markets, schools and airports and provide useful insights into the technological environment and help researchers acknowledge the choices and gaps available in this field. In this narrative review, the detection of coronavirus disease 2019 (COVID-19) technologies is summarized and discussed with a comparison between them from several aspects to arrive at an accurate decision on the feasibility of applying the best of these techniques in the biosensors that operate using laser detection technology. The collection of data in this analysis was done by using six reliable academic databases, namely, Science Direct, IEEE Xplore, Scopus, Web of Science, Google Scholar and PubMed. This review includes an analysis review of three highlights: evaluating the hazard of pandemic COVID-19 transmission styles and comparing them with Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) to identify the main causes of the virus spreading, a critical analysis to diagnose coronavirus disease 2019 (COVID-19) based on artificial intelligence using CT scans and CXR images and types of biosensors. Finally, we select the best methods that can potentially stop the propagation of the coronavirus pandemic.


Assuntos
Técnicas Biossensoriais/métodos , Teste para COVID-19/métodos , COVID-19/diagnóstico , Animais , Inteligência Artificial , Técnicas Biossensoriais/estatística & dados numéricos , COVID-19/transmissão , COVID-19/virologia , Teste para COVID-19/estatística & dados numéricos , Microbiologia Ambiental , Monitoramento Ambiental , Humanos , Pandemias , SARS-CoV-2/isolamento & purificação , Tomografia Computadorizada por Raios X/estatística & dados numéricos
7.
ACS Synth Biol ; 13(6): 1600-1620, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38842483

RESUMO

Antimicrobial resistance (AMR) poses a critical global One Health concern, ensuing from unintentional and continuous exposure to antibiotics, as well as challenges in accurate contagion diagnostics. Addressing AMR requires a strategic approach that emphasizes early stage prevention through screening in clinical, environmental, farming, and livestock settings to identify nonvulnerable antimicrobial agents and the associated genes. Conventional AMR diagnostics, like antibiotic susceptibility testing, possess drawbacks, including high costs, time-consuming processes, and significant manpower requirements, underscoring the need for intelligent, prompt, and on-site diagnostic techniques. Nanoenabled artificial intelligence (AI)-supported smart optical biosensors present a potential solution by facilitating rapid point-of-care AMR detection with real-time, sensitive, and portable capabilities. This Review comprehensively explores various types of optical nanobiosensors, such as surface plasmon resonance sensors, whispering-gallery mode sensors, optical coherence tomography, interference reflection imaging sensors, surface-enhanced Raman spectroscopy, fluorescence spectroscopy, microring resonance sensors, and optical tweezer biosensors, for AMR diagnostics. By harnessing the unique advantages of these nanoenabled smart biosensors, a revolutionary paradigm shift in AMR diagnostics can be achieved, characterized by rapid results, high sensitivity, portability, and integration with Internet-of-Things (IoT) technologies. Moreover, nanoenabled optical biosensors enable personalized monitoring and on-site detection, significantly reducing turnaround time and eliminating the human resources needed for sample preservation and transportation. Their potential for holistic environmental surveillance further enhances monitoring capabilities in diverse settings, leading to improved modern-age healthcare practices and more effective management of antimicrobial treatments. Embracing these advanced diagnostic tools promises to bolster global healthcare capacity to combat AMR and safeguard One Health.


Assuntos
Inteligência Artificial , Técnicas Biossensoriais , Nanoestruturas , Técnicas Biossensoriais/métodos , Nanoestruturas/química , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética
8.
Microbes Infect ; 25(8): 105187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37517605

RESUMO

Comprehending the morphological disparities between SARS-CoV-2 and SARS-CoV viruses can shed light on the underlying mechanisms of infection and facilitate the development of effective diagnostic tools and treatments. Hence, this study aimed to conduct a comprehensive analysis and comparative assessment of the morphology of SARS-CoV-2 and SARS-CoV using transmission electron microscopy (TEM) images. The dataset encompassed 519 isolated SARS-CoV-2 images obtained from patients in Italy (INMI) and 248 isolated SARS-CoV images from patients in Germany (Frankfurt). In this paper, we employed TEM images to scrutinize morphological features, and the outcomes were contrasted with those of SARS-CoV viruses. The findings reveal disparities in the characteristics of SARS-CoV-2 and SARS-CoV, such as envelope protein (E) 98.6 and 102.2 nm, length of spike protein (S) 10.11 and 9.50 nm, roundness 0.86 and 0.88, circularity 0.78 and 0.76, and area sizes 25145.54 and 38591.35 pixels, respectively. In conclusion, these results will augment the identification of virus subtypes, aid in the study of antiviral medications, and enhance our understanding of disease progression and the virus life cycle. Moreover, these findings have the potential to assist in the development of more accurate epidemiological prediction models for COVID-19, leading to better outbreak management and saving lives.


Assuntos
COVID-19 , Vírus , Humanos , SARS-CoV-2/metabolismo , Vírus/metabolismo , Antivirais/uso terapêutico , Microscopia Eletrônica de Transmissão
9.
Sci Total Environ ; 880: 163333, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028663

RESUMO

Constantly mutating SARS-CoV-2 is a global concern resulting in COVID-19 infectious waves from time to time in different regions, challenging present-day diagnostics and therapeutics. Early-stage point-of-care diagnostic (POC) biosensors are a crucial vector for the timely management of morbidity and mortalities caused due to COVID-19. The state-of-the-art SARS-CoV-2 biosensors depend upon developing a single platform for its diverse variants/biomarkers, enabling precise detection and monitoring. Nanophotonic-enabled biosensors have emerged as 'one platform' to diagnose COVID-19, addressing the concern of constant viral mutation. This review assesses the evolution of current and future variants of the SARS-CoV-2 and critically summarizes the current state of biosensor approaches for detecting SARS-CoV-2 variants/biomarkers employing nanophotonic-enabled diagnostics. It discusses the integration of modern-age technologies, including artificial intelligence, machine learning and 5G communication with nanophotonic biosensors for intelligent COVID-19 monitoring and management. It also highlights the challenges and potential opportunities for developing intelligent biosensors for diagnosing future SARS-CoV-2 variants. This review will guide future research and development on nano-enabled intelligent photonic-biosensor strategies for early-stage diagnosing of highly infectious diseases to prevent repeated outbreaks and save associated human mortalities.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Inteligência Artificial , Inteligência , Teste para COVID-19
10.
Viruses ; 14(11)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36366485

RESUMO

The SARS-CoV-2 virus is responsible for the rapid global spread of the COVID-19 disease. As a result, it is critical to understand and collect primary data on the virus, infection epidemiology, and treatment. Despite the speed with which the virus was detected, studies of its cell biology and architecture at the ultrastructural level are still in their infancy. Therefore, we investigated and analyzed the viral morphometry of SARS-CoV-2 to extract important key points of the virus's characteristics. Then, we proposed a prediction model to identify the real virus levels based on the optimization of a full recurrent neural network (RNN) using transmission electron microscopy (TEM) images. Consequently, identification of virus levels depends on the size of the morphometry of the area (width, height, circularity, roundness, aspect ratio, and solidity). The results of our model were an error score of training network performance 3.216 × 10-11 at 639 epoch, regression of -1.6 × 10-9, momentum gain (Mu) 1 × 10-9, and gradient value of 9.6852 × 10-8, which represent a network with a high ability to predict virus levels. The fully automated system enables virologists to take a high-accuracy approach to virus diagnosis, prevention of mutations, and life cycle and improvement of diagnostic reagents and drugs, adding a point of view to the advancement of medical virology.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Redes Neurais de Computação , Microscopia Eletrônica de Transmissão
11.
Diagnostics (Basel) ; 11(6)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205401

RESUMO

The propagation of viruses has become a global threat as proven through the coronavirus disease (COVID-19) pandemic. Therefore, the quick detection of viral diseases and infections could be necessary. This study aims to develop a framework for virus diagnoses based on integrating photonics technology with artificial intelligence to enhance healthcare in public areas, marketplaces, hospitals, and airfields due to the distinct spectral signatures from lasers' effectiveness in the classification and monitoring of viruses. However, providing insights into the technical aspect also helps researchers identify the possibilities and difficulties in this field. The contents of this study were collected from six authoritative databases: Web of Science, IEEE Xplore, Science Direct, Scopus, PubMed Central, and Google Scholar. This review includes an analysis and summary of laser techniques to diagnose COVID-19 such as fluorescence methods, surface-enhanced Raman scattering, surface plasmon resonance, and integration of Raman scattering with SPR techniques. Finally, we select the best strategies that could potentially be the most effective methods of reducing epidemic spreading and improving healthcare in the environment.

12.
Biosensors (Basel) ; 11(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34436055

RESUMO

Understanding environmental information is necessary for functions correlated with human activities to improve healthcare quality and reduce ecological risk. Tapered optical fibers reduce some limitations of such devices and can be considerably more responsive to fluorescence and absorption properties changes. Data have been collected from reliable sources such as Science Direct, IEEE Xplore, Scopus, Web of Science, PubMed, and Google Scholar. In this narrative review, we have summarized and analyzed eight classes of tapered-fiber forms: fiber Bragg grating (FBG), long-period fiber grating (LPFG), Mach-Zehnder interferometer (MZI), photonic crystals fiber (PCF), surface plasmonic resonance (SPR), multi-taper devices, fiber loop ring-down technology, and optical tweezers. We evaluated many issues to make an informed judgement about the viability of employing the best of these methods in optical sensors. The analysis of performance for tapered optical fibers depends on four mean parameters: taper length, sensitivity, wavelength scale, and waist diameter. Finally, we assess the most potent strategy that has the potential for medical and environmental applications.


Assuntos
Tecnologia de Fibra Óptica , Fibras Ópticas , Humanos , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA