Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 293(2): 497-509, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29146596

RESUMO

Peroxide sensing is essential for bacterial survival during aerobic metabolism and host infection. Peroxide stress regulators (PerRs) are homodimeric transcriptional repressors with each monomer typically containing both structural and regulatory metal-binding sites. PerR binding to gene promoters is controlled by the presence of iron in the regulatory site, and iron-catalyzed oxidation of PerR by H2O2 leads to the dissociation of PerR from DNA. In addition to a regulatory metal, most PerRs require a structural metal for proper dimeric assembly. We present here a structural and functional characterization of the PerR from the pathogenic spirochete Leptospira interrogans, a rare example of PerR lacking a structural metal-binding site. In vivo studies showed that the leptospiral PerR belongs to the peroxide stimulon in pathogenic species and is involved in controlling resistance to peroxide. Moreover, a perR mutant had decreased fitness in other host-related stress conditions, including at 37 °C or in the presence of superoxide anion. In vitro, leptospiral PerR could bind to the perR promoter region in a metal-dependent manner. The crystal structure of the leptospiral PerR revealed an asymmetric homodimer, with one monomer displaying complete regulatory metal coordination in the characteristic caliper-like DNA-binding conformation and the second monomer exhibiting disrupted regulatory metal coordination in an open non-DNA-binding conformation. This structure showed that leptospiral PerR assembles into a dimer in which a metal-induced conformational switch can occur independently in the two monomers. Our study demonstrates that structural metal binding is not compulsory for PerR dimeric assembly and for regulating peroxide stress.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Leptospira interrogans/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Leptospira interrogans/genética , Mitose/genética , Mitose/fisiologia , Ligação Proteica , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
2.
Sci Adv ; 10(39): eadn8117, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39321303

RESUMO

The rapid emergence and spread of multidrug-resistant bacterial pathogens require the development of antibacterial agents that are robustly effective while inducing no toxicity or resistance development. In this context, we designed and synthesized amphiphilic dendrimers as antibacterial candidates. We report the promising potent antibacterial activity shown by the amphiphilic dendrimer AD1b, composed of a long hydrophobic alkyl chain and a tertiary amine-terminated poly(amidoamine) dendron, against a panel of Gram-negative bacteria, including multidrug-resistant Escherichia coli and Acinetobacter baumannii. AD1b exhibited effective activity against drug-resistant bacterial infections in vivo. Mechanistic studies revealed that AD1b targeted the membrane phospholipids phosphatidylglycerol (PG) and cardiolipin (CL), leading to the disruption of the bacterial membrane and proton motive force, metabolic disturbance, leakage of cellular components, and, ultimately, cell death. Together, AD1b that specifically interacts with PG/CL in bacterial membranes supports the use of small amphiphilic dendrimers as a promising strategy to target drug-resistant bacterial pathogens and addresses the global antibiotic crisis.


Assuntos
Antibacterianos , Dendrímeros , Fosfatidilgliceróis , Dendrímeros/química , Dendrímeros/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Fosfatidilgliceróis/química , Testes de Sensibilidade Microbiana , Escherichia coli/efeitos dos fármacos , Animais , Acinetobacter baumannii/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo
3.
Biochim Biophys Acta Gen Subj ; 1865(3): 129810, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33309686

RESUMO

BACKGROUND: Zra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn2+, it is not involved in zinc homeostasis or protection against zinc toxicity. Here, we mainly focus on ZraS but also provide information on ZraP. METHODS: The purified periplasmic domain of ZraS and ZraP were characterized using biophysical and biochemical technics: multi-angle laser light scattering (MALLS), circular dichroism (CD), differential scanning fluorescence (DSF), inductively coupled plasma atomic emission spectroscopy (ICP-AES), cross-linking and small-angle X-ray scattering (SAXS). In-vivo experiments were carried out to determine the redox state of the cysteine residue in ZraP and the consequences for the cell of an over-activation of the Zra system. RESULTS: We show that ZraS binds one Zn2+ molecule with high affinity resulting in conformational changes of the periplasmic domain, consistent with a triggering function of the metal ion. We also demonstrate that, in the periplasm, the only cysteine residue of ZraP is at least partially reduced. Using SAXS, we conclude that the previously determined X-ray structure is different from the structure in solution. CONCLUSION: Our results allow us to propose a general mechanism for the Zra system activation and to compare it to the homologous Cpx system. GENERAL SIGNIFICANCE: We bring new input on the so far poorly described Zra system and notably on ZraS.


Assuntos
Arabinose/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Transativadores/química , Zinco/química , Sequência de Aminoácidos , Arabinose/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Periplasma/genética , Periplasma/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Transativadores/genética , Transativadores/metabolismo , Zinco/metabolismo
4.
J Mol Biol ; 430(24): 4971-4985, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30389436

RESUMO

During their lifecycle, bacteria are exposed to continuous changes in their environment, some of which are stressful and can be harmful. The cell envelope is the first line of defense against a hostile environment, but it is also the first target for damage. To deal with this problem, bacteria have evolved systems collectively called "envelope stress response," or ESR, dedicated to the detection and repair of damaged components. Here we decided to investigate whether the atypical two-component system ZraP-SR is a novel ESR. Based on the screening of more than 240 drugs using the Biolog technology, we show that the deletion of zraP or zraR confers increased susceptibility to five classes of antibiotics and to some environmental stress targeting the envelope. Using a microscopy approach, we also establish that ZraP and ZraR are required to maintain envelope integrity. So far, the ZraR regulator was only known to activate the transcription of zraP and zraSR. Using chromatin immunoprecipitation followed by sequencing and RT-qPCR, we have now identified 25 additional genes regulated by ZraR, the majority of which are involved in the response against stress. Taken together, our results demonstrate that ZraP-SR is a novel ESR.


Assuntos
Antibacterianos/farmacologia , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Transativadores/genética , Imunoprecipitação da Cromatina , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Análise de Sequência de RNA , Estresse Fisiológico , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA