Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Phys Med Rehabil ; 105(3): 525-530, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37757940

RESUMO

OBJECTIVE: To explore the potential predictors of people with Parkinson disease (PD) who would benefit the most from treadmill training. DESIGN: A cohort study. SETTING: Medical university rehabilitation settings. PARTICIPANTS: Seventy participants diagnosed of idiopathic PD. INTERVENTIONS: Twelve sessions of treadmill training. MAIN OUTCOME MEASURES: Hierarchical logistic regression models were used to explore significant predictors of the treadmill training effect with respect to 3 health domains: Unified Parkinson's Disease Rating Scales part III (UPDRS III); gait speed; Parkinson's Disease Questionnaire-39 (PDQ-39). A receiver operating characteristic (ROC) curve analysis was conducted to identify proper cut-off points for clinical use. RESULTS: Male sex (adjusted odds ratio [OR]: 3.73, P=.036) significantly predicted the improvement of UPDRS III. Individuals with a slower baseline gait speed (cut-off: 0.92 m/s, adjusted OR: 14.06, P<.001) and higher baseline balance confidence measured by the Activity-specific Balance Confidence scale (cut-off: 84.5 points, adjusted OR: 4.66, P=.022) have greater potential to achieve clinically relevant improvements in gait speed. A poorer baseline PDQ-39 score (cut-off: 23.1, adjusted OR: 7.47, P<.001) predicted a greater quality of life improvement after treadmill training. CONCLUSIONS: These findings provide a guideline for clinicians to easily identify suitable candidates for treadmill training. Generalization to more advanced patients with PD warrants further investigation.


Assuntos
Doença de Parkinson , Humanos , Masculino , Estudos de Coortes , Qualidade de Vida , Modelos Logísticos , Testes de Estado Mental e Demência
2.
Eur J Neurol ; 30(10): 3098-3104, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37422850

RESUMO

BACKGROUND AND PURPOSE: Dystonia is a heterogeneous movement disorder, and it remains unclear whether neurodegeneration is involved. Neurofilament light chain (NfL) is a biosignature of neurodegeneration. We aimed to investigate whether plasma NfL levels were elevated and associated with disease severity in patients with dystonia. METHOD: We enrolled 231 unrelated dystonia patients (isolated dystonia n = 203; combined dystonia n = 28) and 54 healthy controls from movement disorder clinics. Clinical severity was evaluated using the Fahn Marsden Dystonia Rating Scale, the Unified Dystonia Rating Scale, and the Global Dystonia Rating Scale. Blood NfL levels were measured by single-molecule array. RESULTS: Plasma NfL levels were significantly higher in those with generalized dystonia compared to those with focal dystonia (20.1 ± 8.8 vs. 11.7 ± 7.2 pg/mL; p = 0.01) or controls (p < 0.01), while the level was comparable between the focal dystonia group and controls (p = 0.08). Furthermore, the dystonia combined with parkinsonism group had higher NfL levels than the isolated dystonia group (17.4 ± 6.2 vs. 13.5 ± 7.5 pg/mL; p = 0.04). Notably, whole-exome sequencing was performed in 79 patients and two patients were identified as having likely pathogenic variants: one had a heterozygous c.122G>A (p.R41H) variant in THAP1 (DYT6) and the other carried a c.1825G>A (p.D609N) substitution in ATP1A3 (DYT12). No significant correlation was found between plasma NfL levels and dystonia rating scores. CONCLUSION: Plasma NfL levels are elevated in patients with generalized dystonia and dystonia combined with parkinsonism, suggesting that neurodegeneration is involved in the disease process of this subgroup of patients.


Assuntos
Distonia , Distúrbios Distônicos , Transtornos dos Movimentos , Humanos , Filamentos Intermediários , Proteínas de Neurofilamentos , Biomarcadores , Proteínas de Ligação a DNA , Proteínas Reguladoras de Apoptose , ATPase Trocadora de Sódio-Potássio
3.
Mol Ther ; 30(2): 509-518, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34763085

RESUMO

Aromatic L-amino acid decarboxylase deficiency results in decreased neurotransmitter levels and severe motor dysfunction. Twenty-six patients without head control received bilateral intraputaminal infusions of a recombinant adeno-associated virus type 2 vector containing the human aromatic L-amino acid decarboxylase gene (eladocagene exuparvovec) and have completed 1-year evaluations. Rapid improvements in motor and cognitive function occurred within 12 months after gene therapy and were sustained during follow-up for >5 years. An increase in dopamine production was demonstrated by positron emission tomography and neurotransmitter analysis. Patient symptoms (mood, sweating, temperature, and oculogyric crises), patient growth, and patient caretaker quality of life improved. Although improvements were observed in all treated participants, younger age was associated with greater improvement. There were no treatment-associated brain injuries, and most adverse events were related to underlying disease. Post-surgery complications such as cerebrospinal fluid leakage were managed with standard of care. Most patients experienced mild to moderate dyskinesia that resolved in a few months. These observations suggest that eladocagene exuparvovec treatment for aromatic L-amino acid decarboxylase deficiency provides durable and meaningful benefits with a favorable safety profile.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Qualidade de Vida , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Descarboxilases de Aminoácido-L-Aromático/líquido cefalorraquidiano , Descarboxilases de Aminoácido-L-Aromático/deficiência , Descarboxilases de Aminoácido-L-Aromático/genética , Dopamina , Terapia Genética/efeitos adversos , Humanos
4.
Neurobiol Dis ; 175: 105899, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265768

RESUMO

Deep brain stimulation (DBS) conventionally target at basal ganglia or thalamic structures, modulating nodal points in the cortico-basal ganglia circuit, in order to effectively treat various movement disorders, including Parkinson's disease, tremor and dystonia (especially mobile type dystonia). However, there are still some other movement disorders, such as dystonia (especially fixed type dystonia), ataxia and freezing of gait, which are not responding well to the current DBS therapy. Cerebellum, similar to basal ganglia, also plays a critical role in the pathophysiology of movement disorders. Deep cerebellar structures, such as dentate nucleus or superior cerebellar peduncle, are noticed for their potential role as treatment targets in movement disorders in recent years. With increasing evidences of animal DBS experiments, recent clinical human subject studies reported that some movement disorders patients not responding to DBS with conventional targets, may benefit significantly from cerebellar DBS. These pioneer study results are invaluable for understanding the clinical use of cerebellar DBS for treatment of movement disorders. We review the recent data of cerebellar DBS performed by different groups and summarize the indications, surgical targets, programming details and outcomes in these clinical reports. We then synthesize the current pathophysiological study of cerebellum on different movement disorders and discuss the potential mechanism of action of cerebellar DBS. In addition to basal ganglia, it is important to study new DBS targets in the cerebellum for more comprehensive treatment of movement disorders.


Assuntos
Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Transtornos Neurológicos da Marcha , Transtornos dos Movimentos , Doença de Parkinson , Animais , Humanos , Estimulação Encefálica Profunda/métodos , Transtornos Neurológicos da Marcha/terapia , Transtornos dos Movimentos/terapia , Cerebelo , Distúrbios Distônicos/terapia
5.
Eur J Neurol ; 29(8): 2544-2547, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35837753

RESUMO

BACKGROUND AND PURPOSE: Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant inherited disorder that manifests as a mixture of cerebellar ataxia, parkinsonism, and polyneuropathy; in type IV SCA3, pure parkinsonism is the only symptom. Currently, no disease-modifying treatment is available, but variable responses to antiparkinsonism agents have been reported. However, the benefits of deep brain stimulation (DBS) for treating parkinsonism in this subtype of SCA3 remain unclear. METHODS: A 39-year-old male patient with a rare disorder of type IV SCA3 presented with pure parkinsonism including unilateral resting tremor, rigidity, and bradykinesia at the age of 30 years. Young-onset Parkinson disease was diagnosed at the age of 32 years. His family history revealed a mild ataxia in his father since the age of 55 years. Genetic testing confirmed an expanded CAG repeated number, with 66 in this case and 63 in his father for SCA3 mutation. Excellent response to levodopa and dopamine agonists in the first 3 years was noted, but wearing-off phenomena, levodopa-induced dyskinesia, and severe impulse control disorders later developed. To alleviate drug-induced complications, he received bilateral subthalamic nucleus deep brain stimulation (STN-DBS) in the absence of cerebellar signs, depression, and cognitive impairment. RESULTS: As of 2019, no impulsive control disorders, motor fluctuations, or DBS-related complications were observed during a 4-year follow-up, with 66% Unified Parkinson's Disease Rating Scale Part III reduction at medication OFF state noted, whereas levodopa equivalent daily dosage decreased by almost half. CONCLUSIONS: STN-DBS may be considered as adjunct treatment for severe dopa-related motor/nonmotor complications in patients with parkinsonian phenotype of SCA 3.


Assuntos
Estimulação Encefálica Profunda , Doença de Machado-Joseph , Transtornos Parkinsonianos , Núcleo Subtalâmico , Estimulação Encefálica Profunda/efeitos adversos , Humanos , Levodopa/uso terapêutico , Masculino , Transtornos Parkinsonianos/etiologia , Transtornos Parkinsonianos/terapia , Resultado do Tratamento
6.
Eur J Neurol ; 29(4): 1044-1055, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34962701

RESUMO

BACKGROUND AND PURPOSE: Levodopa-induced dyskinesia (LID) is a common motor complication in patients with Parkinson's disease (PD). Although amantadine is indicated for LID treatment, it is uncertain whether early treatment with amantadine reduces the risk of LID in patients with PD. We aimed to evaluate the association between amantadine treatment and LID onset in patients with early-stage PD. METHODS: This was a hospital-based retrospective cohort study that used electronic medical records from January 1, 2009 to October 31, 2016. The effect of amantadine on LID onset was compared with those of anticholinergics and monoamine oxidase type B inhibitors in patients with PD. Propensity-score weighting and landmark analysis were used to reduce potential confounding. The time to LID onset was analyzed using Cox models. Sensitivity analyses were performed to determine the robustness of the results. RESULTS: The analyses included 807, 661, and 518 patients at 6-, 12-, and 18-month landmark points, respectively. Amantadine use was associated with delayed LID onset in the 6- and 12-month landmark analyses, with adjusted hazard ratios of 0.65 (95% confidence interval [CI] = 0.49-0.86) and 0.64 (95% CI = 0.47-0.88), respectively. Sensitivity analysis findings were comparable to those of the main analysis. CONCLUSIONS: Early treatment with amantadine may delay LID onset more than treatment with other symptomatic agents. Further studies are needed to elucidate the mechanism of amantadine in LID onset delay and to validate our findings.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Amantadina/efeitos adversos , Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/epidemiologia , Discinesia Induzida por Medicamentos/etiologia , Humanos , Levodopa/efeitos adversos , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Estudos Retrospectivos
7.
Eur J Neurol ; 29(10): 2956-2966, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35748722

RESUMO

BACKGROUND AND PURPOSE: Multiple system atrophy (MSA) has no definitive genetic or environmental (G-E) risk factors, and the integrated effect of these factors on MSA etiology remains unknown. This study was undertaken to investigate the integrated effect of G-E factors associated with MSA and its subtypes, MSA-P and MSA-C. METHODS: A consecutive case-control study was conducted at two medical centers, and the interactions between genotypes of five previously reported susceptible single nucleotide polymorphisms (SNPs; SNCA_rs3857059, SNCA_rs11931074, COQ2_rs148156462, EDN1_rs16872704, MAPT_rs9303521) and graded exposure (never, ever, current) of four environmental factors (smoking, alcohol, drinking well water, pesticide exposure) were analyzed by a stepwise logistic regression model. RESULTS: A total of 207 MSA patients and 136 healthy controls were enrolled. In addition to SNP COQ2_rs148156462 (TT), MSA risk was correlated with G-E interactions, including COQ2_rs148156462 (Tc) × pesticide nonexposure, COQ2_rs148156462 (TT) × current smokers, SNCA_rs11931074 (tt) × alcohol nonusers, and SNCA_rs11931074 (GG) × well water nondrinkers (all p < 0.01), with an area under the receiver operating characteristic curve (AUC) of 0.804 (95% confidence interval [CI] = 0.671-0.847). Modulated risk of MSA-C, with MSA-P as a control, correlated with COQ2_rs148156462 (TT) × alcohol nondrinkers, SNCA_rs11931074 (GG) × well water ever drinkers, SNCA_rs11931074 (Gt) × well water never drinkers, and SNCA_rs3857059 (gg) × pesticide nonexposure (all p < 0.05), with an AUC of 0.749 (95% CI = 0.683-0.815). CONCLUSIONS: Certain COQ2 and SNCA SNPs interact with common environmental factors to modulate MSA etiology and subtype disposition. The mechanisms underlying the observed correlation between G-E interactions and MSA etiopathogenesis warrant further investigation.


Assuntos
Alquil e Aril Transferases/genética , Atrofia de Múltiplos Sistemas , Praguicidas , Estudos de Casos e Controles , Predisposição Genética para Doença , Humanos , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/patologia , Água , alfa-Sinucleína/genética
8.
Arch Phys Med Rehabil ; 103(10): 1917-1923, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35810822

RESUMO

OBJECTIVE: To investigate whether varying practice context during gait training could reduce context dependency and facilitate transfer of improved gait performance to a new context. DESIGN: A single-blind, parallel-group randomized controlled trial. SETTING: Medical university rehabilitation settings. PARTICIPANTS: Forty-nine participants with Parkinson disease were recruited and randomized into the constant (CONS) or varied (VARI) context group. INTERVENTIONS: All participants received 12 sessions of treadmill and over-ground gait training. The CONS group was trained in a constant environmental context throughout the study, whereas the VARI group received training in 2 different contexts in an alternating order. MAIN OUTCOME MEASURES: The primary outcome was gait performance, including velocity, cadence, and stride length. The participants were assessed in the original training context as well as in a novel context at posttest to determine the influence of changed environmental context on gait performance. RESULTS: Though both groups improved significantly after training, the CONS group showed greater improvement in stride length than the VARI group when assessed in the original practice context. However, the CONS group showed a decreased velocity and stride length in the novel context, whereas the VARI group maintained their performance. CONCLUSIONS: Varying practice context could facilitate transfer of improved gait performance to a novel context.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Terapia por Exercício , Marcha , Transtornos Neurológicos da Marcha/reabilitação , Humanos , Doença de Parkinson/reabilitação , Método Simples-Cego , Resultado do Tratamento
9.
J Formos Med Assoc ; 121(1 Pt 2): 375-380, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34092466

RESUMO

BACKGROUND/PURPOSE: A heterozygous three-nucleotide (GAG) in-frame deletion in the TOR1A gene causes the rare disease, dystonia (DYT1), which typically presents as focal limb dystonia during adolescence, then spreads to other limbs. This study investigated the frequency and clinical features of DYT1 in a Taiwanese dystonia cohort. METHODS: We performed targeted next generation sequencing in 318 patients with primary dystonia. We identified one DYT1 family with various types of dystonia, and we described the clinical presentations observed in this family during a 30-year follow-up. We compared the clinical characteristics to those reported in previous studies on DYT1 from 2000 to 2020. RESULTS: Among 318 patients, we identified only one DYT1 patient (0.3%) with an autosomal dominant family history of dystonia. The proband was a 43-year-old man that experienced progressive onset of focal lower limb dystonia from age 11 years. The disease spread caudal-rostrally to the upper limbs and cervical muscles. Prominent cervical dystonia was noted during follow-up, which was an atypical presentation of DYT1. Clinical assessments of other family members showed intrafamily variability. The proband's father and an affected sibling demonstrated only mild right-hand writer's cramp. A systematic review of previously reported DTY1 cases showed that Asian patients had a higher frequency of cervical dystonia (44.8%) than groups of Ashkenazi Jews (35%) and Non-Jewish Caucasians (30.5%) (P = 0.04). CONCLUSION: Our findings revealed that DYT1 is rare in a Taiwanese dystonia cohort. The presentation of marked cervical dystonia could be the main feature of Asian patients with DYT1.


Assuntos
Distúrbios Distônicos , Doenças Genéticas Ligadas ao Cromossomo X , Adulto , Criança , Distúrbios Distônicos/genética , Humanos , Masculino , Chaperonas Moleculares/genética , Taiwan
10.
Mov Disord ; 36(5): 1229-1237, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33449392

RESUMO

BACKGROUND: Recent evidence indicates that lipophilic statins have a neuroprotective benefit in animal models of Parkinson's disease (PD). The objective of this study was to evaluate whether lovastatin has the potential to slow motor symptom progression in patients with early-stage PD. METHODS: This double-blind, randomized, placebo-controlled trial enrolled 77 patients with early-stage PD between May 23, 2017, and July 12, 2018, with follow-up ending September 1, 2019. Lovastatin 80 mg/day or placebo with 1:1 randomization was administered for 48 weeks. Mean change in the parts I-III scores of the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), changes in the striatal dopamine uptake ratio measured by 18 F-dopa PET scan, and changes in PD medications between baseline and the week 48 visit were measured. RESULTS: Of the 77 randomized patients, 70 (90.9%) completed the study. There was a slightly beneficial trend of the MDS-UPDRS motor score in the lovastatin group (-3.18 ± 5.50) compared with the placebo group (-0.50 ± 6.11); P = 0.14 adjusted for age, sex, disease duration, and baseline LEDD. Mean percentage change in the striatal 18 F-dopa uptake ratio deteriorated less in the lovastatin group than in the placebo group on the dominant side of caudate (1.2% ± 7.3% vs -7.1% ± 8.2%, P < 0.01) and putamen (2.3% ± 7.1% vs -6.4% ± 8.1%, P < 0.01). We found no between-group differences in the change in part I or part II MDS-UPDRS scores. Lovastatin was generally well tolerated. CONCLUSIONS: Lovastatin treatment in patients with early-stage PD was associated with a trend of less motor symptom worsening and was well tolerated. A future larger long-term follow-up study is needed to confirm our findings. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Método Duplo-Cego , Seguimentos , Humanos , Lovastatina/uso terapêutico , Testes de Estado Mental e Demência , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico
11.
Acta Neurol Taiwan ; 30(3): 83-93, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34841503

RESUMO

Parkinson' disease (PD) is a common neurodegenerative disease with the pathological hallmark of alpha-synuclein aggregation within dopaminergic neurons. The etiology of PD comes from a complex interplay between genetic and environmental factors. Though most cases of PD are sporadic; a family history of PD is found in approximately 15% of patients. Pathogenic mutations are found in 5% to 10% of individuals with either familial or sporadic PD. In recent decades, because of the advent of next generation sequencing, more than 25 genes have been identified as causative genes in PD. These findings allow better understanding of the pathogenesis of PD, including aberrant alpha-synuclein homeostasis, defective mitochondrial functions, and impairment of the ubiquitin-proteasome and autophagy-lysosome pathways. Among the PD-causative genes, LRRK2 mutation is the most frequent mutation in autosomal dominant PD and Parkin mutation is prevalent in patients with autosomal recessive or early onset PD. Several genetic epidemiology studies in Asians have revealed a distinctive mutation spectrum from Western populations, reinforcing the importance of ethnic differences in PD. Proper genetic testing is recommended for patients with early onset, a strong family history, or associated red flag clinical features. Considering that clinical trials of disease-modifying therapy targeting patients with specific mutations are ongoing and we are in the era of precision medicine, this review highlights recent updates of genetic findings in patients with PD, focusing on Asian populations and practical recommendations for genetic testing. Keywords: Parkinson's disease, Genetics.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Mutação , Doença de Parkinson/genética , Doença de Parkinson/terapia , alfa-Sinucleína/genética
12.
Mov Disord ; 34(4): 506-515, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30788857

RESUMO

BACKGROUND: Recent genetic progress has allowed for the molecular diagnosis of Parkinson's disease. However, genetic causes of PD vary widely in different ethnicities. Mutational frequencies and clinical phenotypes of genes associated with PD in Asian populations are largely unknown. The objective of this study was to identify the mutational frequencies and clinical spectrums of multiple PD-causative genes in a Taiwanese PD cohort. METHODS: A total of 571 participants including 324 patients with early-onset parkinsonism (onset age, <50 years) and 247 parkinsonism pedigrees were recruited at a tertiary referral center in Taiwan from 2002 to 2017. Genetic causes were identified by an integrated approach including gene dosage analysis, a targeted next-generation sequencing panel containing 40 known PD-causative genes, repeat-primed polymerase chain reaction, and whole-exome sequencing analysis. RESULTS: Thirty of the 324 patients with early-onset parkinsonism (9.3%) were found to carry mutations in Parkin, PINK1, or PLA2G6 or had increased trinucleotide repeats in SCA8. Twenty-nine of 109 probands with autosomal-recessive inheritance of parkinsonism (26.6%) were found to carry mutations in Parkin, PINK1, GBA, or HTRA2. The genetic causes for the 138 probands with an autosomal-dominant inheritance pattern of parkinsonism were more heterogeneous. Seventeen probands (12.3%) carried pathogenic mutations in LRRK2, VPS35, MAPT, GBA, DNAJC13, C9orf72, SCA3, or SCA17. A novel missense mutation in the UQCRC1 gene was found in a family with autosomal-dominant inheritance parkinsonism via whole-exome sequencing analysis. CONCLUSIONS: Our findings provide a better understanding of the genetic architecture of PD in eastern Asia and broaden the clinical spectrum of PD-causing mutations. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Dosagem de Genes , Transtornos Parkinsonianos/genética , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética , Adulto , Idade de Início , Idoso , Feminino , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Taiwan
13.
Mov Disord ; 33(1): 10-20, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28960543

RESUMO

Pedunculopontine nucleus region deep brain stimulation (DBS) is a promising but experimental therapy for axial motor deficits in Parkinson's disease (PD), particularly gait freezing and falls. Here, we summarise the clinical application and outcomes reported during the past 10 years. The published dataset is limited, comprising fewer than 100 cases. Furthermore, there is great variability in clinical methodology between and within surgical centers. The most common indication has been severe medication refractory gait freezing (often associated with postural instability). Some patients received lone pedunculopontine nucleus DBS (unilateral or bilateral) and some received costimulation of the subthalamic nucleus or internal pallidum. Both rostral and caudal pedunculopontine nucleus subregions have been targeted. However, the spread of stimulation and variance in targeting means that neighboring brain stem regions may be implicated in any response. Low stimulation frequencies are typically employed (20-80 Hertz). The fluctuating nature of gait freezing can confound programming and outcome assessments. Although firm conclusions cannot be drawn on therapeutic efficacy, the literature suggests that medication refractory gait freezing and falls can improve. The impact on postural instability is unclear. Most groups report a lack of benefit on gait or limb akinesia or dopaminergic medication requirements. The key question is whether pedunculopontine nucleus DBS can improve quality of life in PD. So far, the evidence supporting such an effect is minimal. Development of pedunculopontine nucleus DBS to become a reliable, established therapy would likely require a collaborative effort between experienced centres to clarify biomarkers predictive of response and the optimal clinical methodology. © 2017 International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Núcleo Tegmental Pedunculopontino/fisiologia , Humanos , PubMed/estatística & dados numéricos
15.
Pflugers Arch ; 466(4): 747-55, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24531801

RESUMO

Parkinson's disease (PD) is one of the most prevalent movement disorder caused by degeneration of the dopaminergic neurons in substantia nigra pars compacta. Deep brain stimulation (DBS) at the subthalamic nucleus (STN) has been a new and effective treatment of PD. It is interesting how a neurological disorder caused by the deficiency of a specific chemical substance (i.e., dopamine) from one site could be so successfully treated by a pure physical maneuver (i.e., DBS) at another site. STN neurons could discharge in the single-spike or the burst modes. A significant increase in STN burst discharges has been unequivocally observed in dopamine-deprived conditions such as PD, and was recently shown to have a direct causal relation with parkinsonian symptoms. The occurrence of burst discharges in STN requires enough available T-type Ca(2+) currents, which could bring the relatively negative membrane potential to the threshold of firing Na(+) spikes. DBS, by injection of negative currents into the extracellular space, most likely would depolarize the STN neuron and then inactivate the T-type Ca(2+) channel. Burst discharges are thus decreased and parkinsonian locomotor deficits ameliorated. Conversely, injection of positive currents into STN itself could induce parkinsonian locomotor deficits in animals without dopaminergic lesions. Local application of T-type Ca(2+) channel blockers into STN would also dramatically decrease the burst discharges and improve parkinsonian locomotor symptoms. Notably, zonisamide, which could inhibit T-type Ca(2+) currents in STN, has been shown to benefit PD patients in a clinical trial. From the pathophysiological perspectives, PD can be viewed as a prototypical disorder of "brain arrhythmias". Modulation of relevant ion channels by physical or chemical maneuvers may be important therapeutic considerations for PD and other diseases related to deranged neural rhythms.


Assuntos
Potenciais de Ação/fisiologia , Canais de Cálcio Tipo T/fisiologia , Estimulação Encefálica Profunda/tendências , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Animais , Dopamina/metabolismo , Humanos , Neurônios/fisiologia , Doença de Parkinson/metabolismo , Núcleo Subtalâmico/fisiologia
16.
Am J Phys Med Rehabil ; 103(7): 617-623, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38207195

RESUMO

OBJECTIVE: Verbal instruction is one of the most commonly used methods that therapists use to correct walking pattern for people with Parkinson disease. This study aimed to compare the long-term training effects of two different verbal instructions that either asked the participants to "take big steps" or "strike the ground with the heel" on walking ability in individuals with Parkinson disease. DESIGN: Forty-five participants with Parkinson disease were randomized into the big-step or heel strike group. The participants underwent 12 sessions of treadmill and overground gait training. Throughout the interventions, the big-step group received an instruction to "take big steps," while the heel strike group received an instruction to "strike the ground with your heel." The primary outcome was gait performance, including velocity, stride length, cadence, and heel strike angle. The participants were assessed before, immediately after, and 1 mo after training. RESULTS: Both groups showed significant improvements in gait performance after training. The heel strike group showed continuous improvements in velocity and stride length during the follow-up period; however, the big-step group showed slightly decreased performance. CONCLUSIONS: A verbal instruction emphasizing heel strike can facilitate long-term retention of walking performance in people with Parkinson disease.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Doença de Parkinson/reabilitação , Doença de Parkinson/fisiopatologia , Masculino , Feminino , Idoso , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/etiologia , Pessoa de Meia-Idade , Terapia por Exercício/métodos , Resultado do Tratamento , Marcha/fisiologia , Caminhada/fisiologia
17.
Ann Clin Transl Neurol ; 11(6): 1557-1566, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38650104

RESUMO

OBJECTIVE: IRF2BPL mutation has been associated with a rare neurodevelopmental disorder with abnormal movements, including dystonia. However, the role of IRF2BPL in dystonia remains elusive. We aimed to investigate IRF2BPL mutations in a Taiwanese dystonia cohort. METHODS: A total of 300 unrelated patients with molecularly unassigned isolated (n = 256) or combined dystonia (n = 44) were enrolled between January 2015 and July 2023. The IRF2BPL variants were analyzed based on whole exome sequencing. The in silico prediction of the identified potential pathogenic variant was performed to predict its pathogenicity. We also compared the clinical and genetic features to previous literature reports. RESULTS: We identified one adolescent patient carrying a de novo heterozygous pathogenic variant of IRF2BPL, c.379C>T (p.Gln127Ter), who presented with generalized dystonia, developmental regression, and epilepsy (0.33% of our dystonia cohort). This variant resides within the polyglutamine (poly Q) domain before the first PEST sequence block of the IRF2BPL protein, remarkably truncating the protein structure. Combined with other patients with IRF2BPL mutations in the literature (n = 60), patients with variants in the poly Q domain have a higher rate of nonsense mutations (p < 0.001) and epilepsy (p = 0.008) than patients with variants in other domains. Furthermore, as our index patient, carriers with substitutions before the first PEST sequence block have significantly older age of onset (p < 0.01) and higher non-epilepsy symptoms, including generalized dystonia (p = 0.003), and ataxia (p = 0.003). INTERPRETATION: IRF2BPL mutation is a rare cause of dystonia in our population. Mutations in different domains of IRF2BPL exhibit different phenotypes.


Assuntos
Distonia , Humanos , Taiwan , Masculino , Feminino , Adolescente , Adulto , Distonia/genética , Criança , Estudos de Coortes , Adulto Jovem , Estudos de Associação Genética , Mutação , Distúrbios Distônicos/genética , Pré-Escolar , Sequenciamento do Exoma , Pessoa de Meia-Idade , Proteínas de Transporte , Proteínas Nucleares
18.
NPJ Parkinsons Dis ; 10(1): 62, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493188

RESUMO

Patients with Parkinson's disease and cognitive impairment (PD-CI) deteriorate faster than those without cognitive impairment (PD-NCI), suggesting an underlying difference in the neurodegeneration process. We aimed to verify brain age differences in PD-CI and PD-NCI and their clinical significance. A total of 94 participants (PD-CI, n = 27; PD-NCI, n = 34; controls, n = 33) were recruited. Predicted age difference (PAD) based on gray matter (GM) and white matter (WM) features were estimated to represent the degree of brain aging. Patients with PD-CI showed greater GM-PAD (7.08 ± 6.64 years) and WM-PAD (8.82 ± 7.69 years) than those with PD-NCI (GM: 1.97 ± 7.13, Padjusted = 0.011; WM: 4.87 ± 7.88, Padjusted = 0.049) and controls (GM: -0.58 ± 7.04, Padjusted = 0.004; WM: 0.88 ± 7.45, Padjusted = 0.002) after adjusting demographic factors. In patients with PD, GM-PAD was negatively correlated with MMSE (Padjusted = 0.011) and MoCA (Padjusted = 0.013) and positively correlated with UPDRS Part II (Padjusted = 0.036). WM-PAD was negatively correlated with logical memory of immediate and delayed recalls (Padjusted = 0.003 and Padjusted < 0.001). Also, altered brain regions in PD-CI were identified and significantly correlated with brain age measures, implicating the neuroanatomical underpinning of neurodegeneration in PD-CI. Moreover, the brain age metrics can improve the classification between PD-CI and PD-NCI. The findings suggest that patients with PD-CI had advanced brain aging that was associated with poor cognitive functions. The identified neuroimaging features and brain age measures can serve as potential biomarkers of PD-CI.

19.
Ann Neurol ; 72(3): 464-76, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23034918

RESUMO

OBJECTIVE: We have reported that intrinsic membrane properties, especially T-type Ca2+ channels, play a key role in the genesis of burst discharges in the subthalamic nucleus (STN) and parkinsonian locomotor symptoms. Whether deep brain stimulation (DBS) exerts its clinical benefits on Parkinson disease (PD) with changes in T currents or other conductances, however, remains elusive. METHODS: Different stimulation protocols, including constant currents of opposite polarity, were applied to STN in vivo or in vitro, and the electrophysiological and behavioral effects were documented in normal and parkinsonian rodents. The effect of correlatively adjusted DBS protocols was also explored in 3 PD patients. RESULTS: Delivery of negative constant current into STN dramatically ameliorated locomotor deficits in parkinsonian rats. It also depolarized STN neurons and decreased T-channel availability as well as burst discharges. In contrast, delivery of positive constant currents to STN induced PD-like locomotor deficits and increased STN burst discharges in normal rats. In addition, the therapeutic effect of DBS was greatly improved in 3 PD patients simply by increasing the pulse width from 60 to 240 microseconds, even at a lower stimulation frequency of 60 Hz. INTERPRETATION: The increased tendency of STN burst discharges may by itself serve as a direct cause of parkinsonian locomotor deficits, even in the absence of deranged dopaminergic innervation. Effective DBS therapy in PD very likely relies on adequate depolarization, and consequent modification of the relevant ionic currents and discharge patterns, of STN neurons.


Assuntos
Transtornos Neurológicos da Marcha/etiologia , Transtornos Parkinsonianos/complicações , Transtornos Parkinsonianos/terapia , Núcleo Subtalâmico/patologia , Núcleo Subtalâmico/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Biofísica , Estimulação Encefálica Profunda/métodos , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Feminino , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Atividade Motora/fisiologia , Neurônios/fisiologia , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Simpatolíticos/toxicidade , Tirosina 3-Mono-Oxigenase/metabolismo
20.
Biomater Res ; 27(1): 8, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755333

RESUMO

BACKGROUND: Parkinson's disease (PD) is one of the most common long-term neurodegenerative diseases. Current treatments for PD are mostly based on surgery and medication because of the limitation and challenges in selecting proper biomaterials. In this study, an injectable bioactive hydrogel based on novel tannic acid crosslinker was developed to treat PD. METHODS: The oxidized tannic acid modified gold nano-crosslinker was synthesized and used to effectively crosslink chitosan for preparation of the bioactive self-healing hydrogel. The crosslinking density, conductivity, self-healing ability, and injectability of the hydrogel were characterized. Abilities of the hydrogel to promote the proliferation and differentiation of neural stem cells (NSCs) were assessed in vitro. Anti-inflammatory property was analyzed on J774A.1 macrophages. The hydrogel was injected in the PD rat model for evaluation of the motor function recovery, electrophysiological performance improvement, and histological repair. RESULTS: The hydrogel exhibited self-healing property and 34G (~ 80 µm) needle injectability. NSCs grown in the hydrogel displayed long-term proliferation and differentiation toward neurons in vitro. Besides, the hydrogel owned strong anti-inflammatory and antioxidative capabilities to rescue inflamed NSCs (~ 90%). Brain injection of the bioactive hydrogel recovered the motor function of PD rats. Electrophysiological measurements showed evident alleviation of irregular discharge of nerve cells in the subthalamic nucleus of PD rats administered with the hydrogel. Histological examination confirmed that the hydrogel alone significantly increased the density of tyrosine hydroxylase positive neurons and fibers as well as reduced inflammation, with a high efficacy similar to drug-loaded hydrogel. CONCLUSION: The new bioactive hydrogel serves as an effective brain injectable implant to treat PD and a promising biomaterial for developing novel strategies to treat brain diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA