Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Annu Rev Cell Dev Biol ; 32: 713-741, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27298088

RESUMO

Mammalian bodies have more than a billion cells per cubic centimeter, which makes whole-body cell (WBC) profiling of an organism one of the ultimate challenges in biology and medicine. Recent advances in tissue-clearing technology have enabled rapid and comprehensive cellular analyses in whole organs and in the whole body by a combination of state-of-the-art technologies of optical imaging and image informatics. In this review, we focus mainly on the chemical principles in currently available techniques for tissue clearing and staining to facilitate our understanding of their underlying mechanisms. Tissue clearing is usually conducted by the following steps: (a) fixation, (b) permeabilization, (c) decolorizing, and (d) refractive index (RI) matching. To phenotype individual cells after tissue clearing, it is important to visualize genetically encoded fluorescent reporters and/or to stain tissues with fluorescent dyes, fluorescent labeled antibodies, or nucleic acid probes. Although some technical challenges remain, the chemical principles in tissue clearing and staining for WBC profiling will enable various applications, such as identifying cellular circuits across multiple organs and measuring their dynamics in stochastic and proliferative cellular processes, for example, autoimmune and malignant neoplastic diseases.


Assuntos
Células/metabolismo , Coloração e Rotulagem , Fixação de Tecidos/métodos , Animais , Fluorescência , Humanos , Permeabilidade , Refratometria
2.
Cell ; 159(4): 911-24, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25417165

RESUMO

The development of whole-body imaging at single-cell resolution enables system-level approaches to studying cellular circuits in organisms. Previous clearing methods focused on homogenizing mismatched refractive indices of individual tissues, enabling reductions in opacity but falling short of achieving transparency. Here, we show that an aminoalcohol decolorizes blood by efficiently eluting the heme chromophore from hemoglobin. Direct transcardial perfusion of an aminoalcohol-containing cocktail that we previously termed CUBIC coupled with a 10 day to 2 week clearing protocol decolorized and rendered nearly transparent almost all organs of adult mice as well as the entire body of infant and adult mice. This CUBIC-perfusion protocol enables rapid whole-body and whole-organ imaging at single-cell resolution by using light-sheet fluorescent microscopy. The CUBIC protocol is also applicable to 3D pathology, anatomy, and immunohistochemistry of various organs. These results suggest that whole-body imaging of colorless tissues at high resolution will contribute to organism-level systems biology.


Assuntos
Amino Álcoois/análise , Análise de Célula Única/métodos , Imagem Corporal Total/métodos , Animais , Diabetes Mellitus/patologia , Imageamento Tridimensional/métodos , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Cell ; 157(3): 726-39, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24746791

RESUMO

Systems-level identification and analysis of cellular circuits in the brain will require the development of whole-brain imaging with single-cell resolution. To this end, we performed comprehensive chemical screening to develop a whole-brain clearing and imaging method, termed CUBIC (clear, unobstructed brain imaging cocktails and computational analysis). CUBIC is a simple and efficient method involving the immersion of brain samples in chemical mixtures containing aminoalcohols, which enables rapid whole-brain imaging with single-photon excitation microscopy. CUBIC is applicable to multicolor imaging of fluorescent proteins or immunostained samples in adult brains and is scalable from a primate brain to subcellular structures. We also developed a whole-brain cell-nuclear counterstaining protocol and a computational image analysis pipeline that, together with CUBIC reagents, enable the visualization and quantification of neural activities induced by environmental stimulation. CUBIC enables time-course expression profiling of whole adult brains with single-cell resolution.


Assuntos
Neuroimagem/métodos , Animais , Encéfalo/citologia , Callithrix , Indicadores e Reagentes/química , Camundongos , Microscopia/métodos
4.
Mol Cell ; 67(5): 783-798.e20, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28886336

RESUMO

Temperature compensation is a striking feature of the circadian clock. Here we investigate biochemical mechanisms underlying temperature-compensated, CKIδ-dependent multi-site phosphorylation in mammals. We identify two mechanisms for temperature-insensitive phosphorylation at higher temperature: lower substrate affinity to CKIδ-ATP complex and higher product affinity to CKIδ-ADP complex. Inhibitor screening of ADP-dependent phosphatase activity of CKIδ identified aurintricarboxylic acid (ATA) as a temperature-sensitive kinase activator. Docking simulation of ATA and mutagenesis experiment revealed K224D/K224E mutations in CKIδ that impaired product binding and temperature-compensated primed phosphorylation. Importantly, K224D mutation shortens behavioral circadian rhythms and changes the temperature dependency of SCN's circadian period. Interestingly, temperature-compensated phosphorylation was evolutionary conserved in yeast. Molecular dynamics simulation and X-ray crystallography demonstrate that an evolutionally conserved CKI-specific domain around K224 can provide a structural basis for temperature-sensitive substrate and product binding. Surprisingly, this domain can confer temperature compensation on a temperature-sensitive TTBK1. These findings suggest the temperature-sensitive substrate- and product-binding mechanisms underlie temperature compensation.


Assuntos
Trifosfato de Adenosina/metabolismo , Caseína Quinase Idelta/metabolismo , Relógios Circadianos , Ritmo Circadiano , Núcleo Supraquiasmático/enzimologia , Temperatura , Animais , Sítios de Ligação , Caseína Quinase Idelta/química , Caseína Quinase Idelta/genética , Domínio Catalítico , Cristalografia por Raios X , Genótipo , Células HEK293 , Humanos , Hidrólise , Cinética , Locomoção , Camundongos Transgênicos , Modelos Biológicos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Fenótipo , Fosforilação , Ligação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Serina , Relação Estrutura-Atividade , Especificidade por Substrato , Técnicas de Cultura de Tecidos , Transfecção
5.
Bioconjug Chem ; 34(12): 2187-2193, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37948852

RESUMO

Understanding the pharmacokinetics of drug candidates of interest in the brain and evaluating drug delivery to the brain are important for developing drugs targeting the brain. Previously, we demonstrated that a CAG repeat-binding small molecule, naphthyridine-azaquinolone (NA), resulted in repeat contraction in mouse models of dentatorubral-pallidoluysian atrophy and Huntington's disease caused by aberrant expansion of CAG repeats. However, the intracerebral distribution and drug deliverability of NA remain unclear. Here, we report three-dimensional whole-brain imaging of an externally administered small molecule using tissue clearing and light sheet fluorescence microscopy (LSFM). We designed and synthesized an Alexa594-labeled NA derivative with a primary amine for whole-brain imaging (NA-Alexa594-NH2), revealing the intracerebral distribution of NA-Alexa594-NH2 after intraparenchymal and intracerebroventricular administrations by whole-brain imaging combined with tissue clearing and LSFM. We also clarified that intranasally administered NA-Alexa594-NH2 was delivered into the brain via multiple nose-to-brain pathways by tracking the time-dependent change in the intracerebral distribution. Whole-brain imaging of small molecules by tissue clearing and LSFM is useful for elucidating not only the intracerebral distribution but also the drug delivery pathways into the brain.


Assuntos
Encéfalo , Neuroimagem , Camundongos , Animais , Encéfalo/diagnóstico por imagem
6.
J Am Chem Soc ; 144(43): 19778-19790, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36191139

RESUMO

Fluorogenic probes for bioimaging have become essential tools for life science and medicine, and the key to their development is a precise understanding of the mechanisms available for fluorescence off/on control, such as photoinduced electron transfer (PeT) and Förster resonance energy transfer (FRET). Here we establish a new molecular design strategy to rationally develop activatable fluorescent probes, which exhibit a fluorescence off/on change in response to target biomolecules, by controlling the twisted intramolecular charge transfer (TICT) process. This approach was developed on the basis of a thorough investigation of the fluorescence quenching mechanism of N-phenyl rhodamine dyes (commercially available as the QSY series) by means of time-dependent density functional theory (TD-DFT) calculations and photophysical evaluation of their derivatives. To illustrate and validate this TICT-based design strategy, we employed it to develop practical fluorogenic probes for HaloTag and SNAP-tag. We further show that the TICT-controlled fluorescence off/on mechanism is generalizable by synthesizing a Si-rhodamine-based fluorogenic probe for HaloTag, thus providing a palette of chemical dyes that spans the visible and near-infrared range.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Corantes Fluorescentes/química , Rodaminas , Ionóforos
7.
Int Immunol ; 33(11): 587-594, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34455438

RESUMO

Cerebral malaria (CM) is a life-threatening complication of the malaria disease caused by Plasmodium falciparum infection and is responsible for the death of half a million people annually. The molecular pathogenesis underlying CM in humans is not completely understood, although sequestration of infected erythrocytes in cerebral microvessels is thought to play a major role. In contrast, experimental cerebral malaria (ECM) models in mice have been thought to be distinct from human CM, and are mainly caused by inflammatory mediators. Here, to understand the spatial distribution and the potential sequestration of parasites in the whole-brain microvessels during a mouse model of ECM, we utilized the new tissue-clearing method CUBIC (Clear, Unobstructed, Brain/Body Imaging Cocktails and Computational analysis) with light-sheet fluorescent microscopy (LSFM), and reconstructed images in three dimensions (3D). We demonstrated significantly greater accumulation of Plasmodium berghei ANKA (PbANKA) parasites in the olfactory bulb (OB) of mice, compared with the other parts of the brain, including the cerebral cortex, cerebellum and brainstem. Furthermore, we show that PbANKA parasites preferentially accumulate in the brainstem when the OB is surgically removed. This study therefore not only highlights a successful application of CUBIC tissue-clearing technology to visualize the whole brain and its microvessels during ECM, but it also shows CUBIC's future potential for visualizing pathological events in the whole ECM brain at the cellular level, an achievement that would greatly advance our understanding of human cerebral malaria.


Assuntos
Encéfalo/patologia , Malária Cerebral/patologia , Animais , Encéfalo/imunologia , Encéfalo/parasitologia , Modelos Animais de Doenças , Malária Cerebral/imunologia , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/imunologia
8.
Bioorg Med Chem Lett ; 29(15): 1886-1890, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31160178

RESUMO

Three-dimensional (3D) imaging based on chemical tissue clearing in the post-mortem human brain is a promising approach for stereoscopic understanding of central nervous system diseases. Especially, delipidation of lipid-rich white matter (WM) is a rate-determining step in human brain clearing by hydrophilic reagents. In this study, we described the rapid delipidation of WM by a 1,2-hexanediol (HxD)-based aqueous solution. HxD delipidation enabled rapid clearing of a formalin-fixed human brain specimen including the WM. Although harsh HxD delipidation was applied to the brain tissue, conventional pathological staining patterns and various types of antigenicity were sufficiently preserved. Furthermore, HxD delipidation was compatible with 3D imaging of fluorescently-labeled tissue samples. HxD delipidation could be useful in future 3D neuropathological diagnosis.


Assuntos
Autopsia/métodos , Encéfalo/efeitos dos fármacos , Glicóis/uso terapêutico , Hexanos/uso terapêutico , Substância Branca/efeitos dos fármacos , Glicóis/farmacologia , Hexanos/farmacologia , Humanos
9.
Bioengineering (Basel) ; 11(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38927759

RESUMO

This study presents a trial analysis that uses brain activity information obtained from mice to detect rheumatoid arthritis (RA) in its presymptomatic stages. Specifically, we confirmed that F759 mice, serving as a mouse model of RA that is dependent on the inflammatory cytokine IL-6, and healthy wild-type mice can be classified on the basis of brain activity information. We clarified which brain regions are useful for the presymptomatic detection of RA. We introduced a matrix completion-based approach to handle missing brain activity information to perform the aforementioned analysis. In addition, we implemented a canonical correlation-based method capable of analyzing the relationship between various types of brain activity information. This method allowed us to accurately classify F759 and wild-type mice, thereby identifying essential features, including crucial brain regions, for the presymptomatic detection of RA. Our experiment obtained brain activity information from 15 F759 and 10 wild-type mice and analyzed the acquired data. By employing four types of classifiers, our experimental results show that the thalamus and periaqueductal gray are effective for the classification task. Furthermore, we confirmed that classification performance was maximized when seven brain regions were used, excluding the electromyogram and nucleus accumbens.

10.
Sci Adv ; 10(30): eadj9335, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058787

RESUMO

Mutations in Dystonin (DST), which encodes cytoskeletal linker proteins, cause hereditary sensory and autonomic neuropathy 6 (HSAN-VI) in humans and the dystonia musculorum (dt) phenotype in mice; however, the neuronal circuit underlying the HSAN-VI and dt phenotype is unresolved. dt mice exhibit dystonic movements accompanied by the simultaneous contraction of agonist and antagonist muscles and postnatal lethality. Here, we identified the sensory-motor circuit as a major causative neural circuit using a gene trap system that enables neural circuit-selective inactivation and restoration of Dst by Cre-mediated recombination. Sensory neuron-selective Dst deletion led to motor impairment, degeneration of proprioceptive sensory neurons, and disruption of the sensory-motor circuit. Restoration of Dst expression in sensory neurons using Cre driver mice or a single postnatal injection of Cre-expressing adeno-associated virus ameliorated sensory degeneration and improved abnormal movements. These findings demonstrate that the sensory-motor circuit is involved in the movement disorders in dt mice and that the sensory circuit is a therapeutic target for HSAN-VI.


Assuntos
Modelos Animais de Doenças , Distonina , Neuropatias Hereditárias Sensoriais e Autônomas , Células Receptoras Sensoriais , Animais , Camundongos , Células Receptoras Sensoriais/metabolismo , Distonina/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Distonia/genética , Humanos , Dependovirus/genética , Fenótipo
11.
ACS Nano ; 18(6): 5167-5179, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301048

RESUMO

Elucidation of biological phenomena requires imaging of microenvironments in vivo. Although the seamless visualization of in vivo hypoxia from the level of whole-body to single-cell has great potential to discover unknown phenomena in biological and medical fields, no methodology for achieving it has been established thus far. Here, we report the whole-body and whole-organ imaging of hypoxia, an important microenvironment, at single-cell resolution using activatable covalent fluorescent probes compatible with tissue clearing. We initially focused on overcoming the incompatibility of fluorescent dyes and refractive index matching solutions (RIMSs), which has greatly hindered the development of fluorescent molecular probes in the field of tissue clearing. The fluorescent dyes compatible with RIMS were then incorporated into the development of activatable covalent fluorescent probes for hypoxia. We combined the probes with tissue clearing, achieving comprehensive single-cell-resolution imaging of hypoxia in a whole mouse body and whole organs.


Assuntos
Corantes Fluorescentes , Imageamento Tridimensional , Animais , Camundongos , Imageamento Tridimensional/métodos , Sondas Moleculares , Hipóxia/diagnóstico por imagem , Imagem Óptica/métodos
12.
Sci Adv ; 10(29): eado8471, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39018410

RESUMO

Click chemistry offers various applications through efficient bioorthogonal reactions. In bioimaging, pretargeting strategies have often been used, using click reactions between molecular probes with a click handle and reporter molecules that make them observable. Recent efforts have integrated tissue-clearing techniques with fluorescent labeling through click chemistry, allowing high-resolution three-dimensional fluorescence imaging. Nevertheless, these techniques have faced a challenge in limited staining depth, confining their use to imaging tissue sections or partial organs. In this study, we introduce Click3D, a method for thoroughly staining whole organs using click chemistry. We identified click reaction conditions that improve staining depth with our custom-developed assay. The Click3D protocol exhibits a greater staining depth compared to conventional methods. Using Click3D, we have successfully achieved whole-kidney imaging of nascent RNA and whole-tumor imaging of hypoxia. We have also accomplished whole-brain imaging of hypoxia by using the clickable hypoxia probe, which has a small size and, therefore, has high permeability to cross the blood-brain barrier.


Assuntos
Química Click , Imageamento Tridimensional , Imagem Óptica , Química Click/métodos , Animais , Imageamento Tridimensional/métodos , Camundongos , Imagem Óptica/métodos , Humanos , Encéfalo/diagnóstico por imagem , Corantes Fluorescentes/química , Rim/diagnóstico por imagem , Linhagem Celular Tumoral
13.
Nat Commun ; 15(1): 4941, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866781

RESUMO

Despite widespread adoption of tissue clearing techniques in recent years, poor access to suitable light-sheet fluorescence microscopes remains a major obstacle for biomedical end-users. Here, we present descSPIM (desktop-equipped SPIM for cleared specimens), a low-cost ($20,000-50,000), low-expertise (one-day installation by a non-expert), yet practical do-it-yourself light-sheet microscope as a solution for this bottleneck. Even the most fundamental configuration of descSPIM enables multi-color imaging of whole mouse brains and a cancer cell line-derived xenograft tumor mass for the visualization of neurocircuitry, assessment of drug distribution, and pathological examination by false-colored hematoxylin and eosin staining in a three-dimensional manner. Academically open-sourced ( https://github.com/dbsb-juntendo/descSPIM ), descSPIM allows routine three-dimensional imaging of cleared samples in minutes. Thus, the dissemination of descSPIM will accelerate biomedical discoveries driven by tissue clearing technologies.


Assuntos
Encéfalo , Imageamento Tridimensional , Microscopia de Fluorescência , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Humanos , Microscopia de Fluorescência/métodos , Microscopia de Fluorescência/instrumentação , Imageamento Tridimensional/métodos , Linhagem Celular Tumoral
14.
Bio Protoc ; 13(7): e4644, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37056247

RESUMO

Microinflammation enhances the permeability of specific blood vessel sites through an elevation of local inflammatory mediators, such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α. By a two-dimensional immunohistochemistry analysis of tissue sections from mice with experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS), we previously showed that pathogenic immune cells, including CD4+ T cells, specifically accumulate and cause microinflammation at the dorsal vessels of the fifth lumbar cord (L5), resulting in the onset of disease. However, usual pathological analyses by using immunohistochemistry on sections are not effective at identifying the microinflammation sites in organs. Here, we developed a new three-dimensional visualization method of microinflammation using luminescent gold nanoclusters (AuNCs) and the clear, unobstructed brain/body imaging cocktails and computational analysis (CUBIC) tissue-clearing method. Our protocol is based on the detection of leaked AuNCs from the blood vessels due to an enhanced vascular permeability caused by the microinflammation. When we injected ultrasmall coordinated Au13 nanoclusters intravenously (i.v.) to EAE mice, and then subjected the spinal cords to tissue clearing, we detected Au signals leaked from the blood vessels at L5 by light sheet microscopy, which enabled the visualization of complex tissue structures at the whole organ level, consistent with our previous report that microinflammation occurs specifically at this site. Our method will be useful to specify and track the stepwise development of microinflammation in whole organs that is triggered by the recruitment of pathogenic immune cells at specific blood vessels in various inflammatory diseases.

15.
Elife ; 122023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36805807

RESUMO

Cerebrospinal fluid-contacting neurons (CSF-cNs) are enigmatic mechano- or chemosensory cells lying along the central canal of the spinal cord. Recent studies in zebrafish larvae and lampreys have shown that CSF-cNs control postures and movements via spinal connections. However, the structures, connectivity, and functions in mammals remain largely unknown. Here we developed a method to genetically target mouse CSF-cNs that highlighted structural connections and functions. We first found that intracerebroventricular injection of adeno-associated virus with a neuron-specific promoter and Pkd2l1-Cre mice specifically labeled CSF-cNs. Single-cell labeling of 71 CSF-cNs revealed rostral axon extensions of over 1800 µm in unmyelinated bundles in the ventral funiculus and terminated on CSF-cNs to form a recurrent circuitry, which was further determined by serial electron microscopy and electrophysiology. CSF-cNs were also found to connect with axial motor neurons and premotor interneurons around the central canal and within the axon bundles. Chemogenetic CSF-cNs inactivation reduced speed and step frequency during treadmill locomotion. Our data revealed the basic structures and connections of mouse CSF-cNs to control spinal motor circuits for proper locomotion. The versatile methods developed in this study will contribute to further understanding of CSF-cN functions in mammals.


Assuntos
Locomoção , Peixe-Zebra , Animais , Camundongos , Interneurônios , Neurônios Motores , Neurônios Eferentes , Mamíferos , Receptores de Superfície Celular , Canais de Cálcio
16.
Biochemistry ; 51(7): 1396-406, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22304362

RESUMO

Hyperphosphorylated forms of tau protein are the main component of paired helical filaments (PHFs) of neurofibrillary tangles in the brain of Alzheimer's disease patients. To understand the effect of phosphorylation on the fibrillation of tau, we utilized tau-derived phosphorylated peptides. The V(306)QIVYK(311) sequence (PHF6) in the microtubule-binding domain is known to play a key role in the fibrillation of tau, and the short peptide corresponding to the PHF6 sequence forms amyloid-type fibrils similar to those generated by full-length tau. We focused on the amino acid residue located at the N-terminus of the PHF6 sequence, serine or lysine in the native isoform of tau, and synthesized the PHF6 derivative peptides with serine or lysine at the N-terminus of PHF6. Peptides phosphorylated at serine and/or tyrosine were synthesized to mimic the possible phosphorylation at these positions. The critical concentrations of the fibrillation of peptides were determined to quantitatively assess fibril stability. The peptide with the net charge of near zero tended to form stable fibrils. Interestingly, the peptide phosphorylated at the N-terminal serine residue exhibited remarkably low fibrillation propensity as compared to the peptide possessing the same net charge. Transmission electron microscopy measurements of the fibrils visualized the paired helical or straight fibers and segregated masses of the fibers or heterogeneous rodlike fibers depending on the phosphorylation status. Further analyses of the fibrils by the X-ray fiber diffraction method and Fourier transform infrared spectroscopic measurements indicated that all the peptides shared a common cross-ß structure. In addition, the phosphoserine-containing peptides showed the characteristics of ß-sandwiches that could interact with both faces of the ß-sheet. On the basis of these observations, possible protofilament models with four ß-sheets were constructed to consider the positional effects of the serine and/or tyrosine phosphorylations. The electrostatic intersheet interaction between phosphate groups and the amino group of lysine enhanced the lateral association between ß-sheets to compensate for the excess charge. In addition to the previously postulated net charge of the peptide, the position of the charged residue plays a critical role in the amyloid fibrillation of tau.


Assuntos
Amiloide/química , Proteínas tau/química , Humanos , Concentração de Íons de Hidrogênio , Lisina/química , Microscopia Eletrônica de Transmissão/métodos , Microtúbulos/metabolismo , Peptídeos/química , Fosfatos/química , Fosforilação , Isoformas de Proteínas , Estrutura Secundária de Proteína , Serina/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X
17.
Diagnostics (Basel) ; 12(11)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36428935

RESUMO

One of the causes of bleeding in subdural hematoma is cortical artery rupture, which is difficult to detect at autopsy. Therefore, reports of autopsy cases with this condition are limited and hence, the pathogenesis of subdural hematoma remains unclear. Herein, for the detection and morphological analysis of cortical artery ruptures as the bleeding sources of subdural hematoma, we used the tissue-clearing CUBIC (clear, unobstructed, brain/body imaging cocktails and computational analysis) method with light-sheet fluorescence microscopy and reconstructed the two-dimensional and three-dimensional images. Using the CUBIC method, we could clearly visualize and detect cortical artery ruptures that were missed by conventional methods. Indeed, the CUBIC method enables three-dimensional morphological analysis of cortical arteries including the ruptured area, and the creation of cross-sectional two-dimensional images in any direction, which are similar to histopathological images. This highlights the effectiveness of the CUBIC method for subdural hematoma analysis.

18.
Sci Rep ; 12(1): 15424, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104440

RESUMO

Posture and gait are maintained by sensory inputs from the vestibular, visual, and somatosensory systems and motor outputs. Upon vestibular damage, the visual and/or somatosensory systems functionally substitute by cortical mechanisms called "sensory reweighting". We investigated the cerebrocortical mechanisms underlying sensory reweighting after unilateral labyrinthectomy (UL) in mice. Arc-dVenus transgenic mice, in which the gene encoding the fluorescent protein dVenus is transcribed under the control of the promoter of the immediate early gene Arc, were used in combination with whole-brain three-dimensional (3D) imaging. Performance on the rotarod was measured as a behavioral correlate of sensory reweighting. Following left UL, all mice showed the head roll-tilt until UL10, indicating the vestibular periphery damage. The rotarod performance worsened in the UL mice from UL1 to UL3, which rapidly recovered. Whole-brain 3D imaging revealed that the number of activated neurons in S1, but not in V1, in UL7 was higher than that in sham-treated mice. At UL7, medial prefrontal cortex (mPFC) and agranular insular cortex (AIC) activation was also observed. Therefore, sensory reweighting to the somatosensory system could compensate for vestibular dysfunction following UL; further, mPFC and AIC contribute to the integration of sensory and motor functions to restore balance.


Assuntos
Vestíbulo do Labirinto , Animais , Córtex Cerebral , Camundongos , Neurônios/fisiologia , Postura , Vestíbulo do Labirinto/fisiologia
19.
Nat Commun ; 13(1): 943, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177608

RESUMO

It has become evident that somatic mutations in cancer-associated genes accumulate in the normal endometrium, but spatiotemporal understanding of the evolution and expansion of mutant clones is limited. To elucidate the timing and mechanism of the clonal expansion of somatic mutations in cancer-associated genes in the normal endometrium, we sequence 1311 endometrial glands from 37 women. By collecting endometrial glands from different parts of the endometrium, we show that multiple glands with the same somatic mutations occupy substantial areas of the endometrium. We demonstrate that "rhizome structures", in which the basal glands run horizontally along the muscular layer and multiple vertical glands rise from the basal gland, originate from the same ancestral clone. Moreover, mutant clones detected in the vertical glands diversify by acquiring additional mutations. These results suggest that clonal expansions through the rhizome structures are involved in the mechanism by which mutant clones extend their territories. Furthermore, we show clonal expansions and copy neutral loss-of-heterozygosity events occur early in life, suggesting such events can be tolerated many years in the normal endometrium. Our results of the evolutionary dynamics of mutant clones in the human endometrium will lead to a better understanding of the mechanisms of endometrial regeneration during the menstrual cycle and the development of therapies for the prevention and treatment of endometrium-related diseases.


Assuntos
Biomarcadores Tumorais/genética , Evolução Clonal , Neoplasias do Endométrio/genética , Endométrio/patologia , Neoplasias Ovarianas/genética , Adulto , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Análise Mutacional de DNA , Neoplasias do Endométrio/patologia , Epitélio/patologia , Feminino , Humanos , Ciclo Menstrual/metabolismo , Pessoa de Meia-Idade , Mutação , Taxa de Mutação , Neoplasias Ovarianas/patologia , Polimorfismo de Nucleotídeo Único , Análise Espaço-Temporal , Adulto Jovem
20.
Commun Biol ; 4(1): 294, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674758

RESUMO

Tissue clearing is one of the most powerful strategies for a comprehensive analysis of disease progression. Here, we established an integrated pipeline that combines tissue clearing, 3D imaging, and machine learning and applied to a mouse tumour model of experimental lung metastasis using human lung adenocarcinoma A549 cells. This pipeline provided the spatial information of the tumour microenvironment. We further explored the role of transforming growth factor-ß (TGF-ß) in cancer metastasis. TGF-ß-stimulated cancer cells enhanced metastatic colonization of unstimulated-cancer cells in vivo when both cells were mixed. RNA-sequencing analysis showed that expression of the genes related to coagulation and inflammation were up-regulated in TGF-ß-stimulated cancer cells. Further, whole-organ analysis revealed accumulation of platelets or macrophages with TGF-ß-stimulated cancer cells, suggesting that TGF-ß might promote remodelling of the tumour microenvironment, enhancing the colonization of cancer cells. Hence, our integrated pipeline for 3D profiling will help the understanding of the tumour microenvironment.


Assuntos
Adenocarcinoma de Pulmão/secundário , Movimento Celular/efeitos dos fármacos , Técnicas de Preparação Histocitológica , Neoplasias Pulmonares/patologia , Fator de Crescimento Transformador beta/farmacologia , Microambiente Tumoral , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Citocinas/metabolismo , Feminino , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia de Fluorescência , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA