Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Plant Mol Biol ; 109(4-5): 651-666, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34476681

RESUMO

KEY MESSAGE: This study describes biological functions of the bHLH transcription factor RERJ1 involved in the jasmonate response and the related defense-associated metabolic pathways in rice, with particular focus on deciphering the regulatory mechanisms underlying stress-induced volatile emission and herbivory resistance. RERJ1 is rapidly and drastically induced by wounding and jasmonate treatment but its biological function remains unknown as yet. Here we provide evidence of the biological function of RERJ1 in plant defense, specifically in response to herbivory and pathogen attack, and offer insights into the RERJ1-mediated regulation of metabolic pathways of specialized defense compounds, such as monoterpene linalool, in possible collaboration with OsMYC2-a well-known master regulator in jasmonate signaling. In rice (Oryza sativa L.), the basic helix-loop-helix (bHLH) family transcription factor RERJ1 is induced under environmental stresses, such as wounding and drought, which are closely linked to jasmonate (JA) accumulation. Here, we investigated the biological function of RERJ1 in response to biotic stresses, such as herbivory and pathogen infection, using an RERJ1-defective mutant. Transcriptome analysis of the rerj1-Tos17 mutant revealed that RERJ1 regulated the expression of a typical family of conserved JA-responsive genes (e.g., terpene synthases, proteinase inhibitors, and jasmonate ZIM domain proteins). Upon exposure to armyworm attack, the rerj1-Tos17 mutant exhibited more severe damage than the wildtype, and significant weight gain of the larvae fed on the mutant was observed. Upon Xanthomonas oryzae infection, the rerj1-Tos17 mutant developed more severe symptoms than the wildtype. Among RERJ1-regulated terpene synthases, linalool synthase expression was markedly disrupted and linalool emission after wounding was significantly decreased in the rerj1-Tos17 mutant. RERJ1 appears to interact with OsMYC2-a master regulator of JA signaling-and many OsJAZ proteins, although no obvious epistatic interaction was detected between them at the transcriptional level. These results indicate that RERJ1 is involved in the transcriptional induction of JA-mediated stress-responsive genes via physical association with OsMYC2 and mediates defense against herbivory and bacterial infection through JA signaling.


Assuntos
Oryza , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Herbivoria , Oryza/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
2.
Plant Cell Physiol ; 63(10): 1344-1355, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35866611

RESUMO

Herbivory-induced plant volatiles (HIPVs) are involved in biotic interactions among plants as well as herbivorous and carnivorous arthropods. This review looks at the specificity in plant-carnivore communication mediated by specific blends of HIPVs as well as describes plant-herbivore and plant-plant communication mediated by specific HIPVs. Factors affecting the net benefits of HIPV production have also been examined. These specific means of communication results in high complexity in the 'interaction-information network', which should be explored further to elucidate the mechanism underlying the numerous species coexisting in ecosystems.


Assuntos
Herbivoria , Compostos Orgânicos Voláteis , Ecossistema , Plantas
3.
Biol Lett ; 18(5): 20210629, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35506238

RESUMO

One of the characteristic aspects of odour sensing in humans is the activation of olfactory receptors in a slightly different manner in response to different enantiomers. Here, we focused on whether plants showed enantiomer-specific response similar to that in humans. We exposed Arabidopsis seedlings to methanol (control) and (+)- or (-)-borneol, and found that only (+)-borneol reduced the root length. Furthermore, the root-tip width was more increased upon (+)-borneol exposure than upon (-)-borneol exposure. In addition, root-hair formation was observed near the root tip in response to (+)-borneol. Auxin signalling was strongly reduced in the root tip following exposure to (+)-borneol, but was detected following exposure to (-)-borneol and methanol. Similarly, in the root tip, the activity of cyclin B1:1 was detected on exposure to (-)-borneol and methanol, but not on exposure to (+)-borneol, indicating that (+)-borneol inhibits the meristematic activity in the root. These results partially explain the (+)-borneol-specific reduction in the root length of Arabidopsis. Our results indicate the presence of a sensing system specific for (+)-borneol in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Canfanos , Humanos , Ácidos Indolacéticos/farmacologia , Meristema/fisiologia , Metanol , Raízes de Plantas/fisiologia
4.
J Chem Ecol ; 45(4): 402-409, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30854610

RESUMO

In nature, parasitoid wasps encounter and sometimes show oviposition behavior to nonhost species. However, little is known about the effect of such negative incidences on their subsequent host-searching behavior. We tested this effect in a tritrophic system of maize plants (Zea mays), common armyworms (hosts), tobacco cutworms (nonhosts), and parasitoid wasps, Cotesia kariyai. We used oviposition inexperienced C. kariyai and negative-experienced individuals that had expressed oviposition behavior toward nonhosts on nonhost-infested maize leaves. We first observed the olfactory behavior of C. kariyai to volatiles from host-infested plants or nonhost-infested plants in a wind tunnel. Negative-experienced wasps showed significantly lower rates of taking-off behavior (Step-1), significantly longer duration until landing (Step-2), and lower rates of landing behavior (Step-3) toward nonhost-infested plants than inexperienced wasps. However, the negative-experience did not affect these three steps toward host-infested plants. A negative experience appears to have negatively affected the olfactory responses to nonhost-infested plants. The chemical analyses suggested that the wasps associated (Z)-3-hexenyl acetate, a compound that was emitted more in nonhost-infested plants, with the negative experience, and reduced their response to nonhost-infested plants. Furthermore, we observed that the searching duration of wasps on either nonhost- or host-infested plants (Step-4) was reduced on both plant types after the negative experiences. Therefore, the negative experience in Step-4 would be nonadaptive for wasps on host-infested plants. Our study indicated that the density (i.e., possible encounters) of nonhost species as well as that of host species in the field should be considered when assessing the host-searching behavior of parasitoid wasps.


Assuntos
Interações Hospedeiro-Parasita , Larva/fisiologia , Oviposição , Olfato , Vespas/fisiologia , Animais , Comportamento Animal , Feminino , Lepidópteros/crescimento & desenvolvimento , Folhas de Planta/parasitologia , Compostos Orgânicos Voláteis/metabolismo , Zea mays/metabolismo , Zea mays/parasitologia
5.
Anim Cogn ; 21(1): 79-86, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29071450

RESUMO

Using Cotesia vestalis, a parasitoid wasp of diamondback moth larvae and three crucifer plant species (cabbage, komatsuna, and Japanese radish), we examined the effects of exposure to host-infested plant volatiles from one plant species on a newly emerged wasp's subsequent olfactory cognition of host-infested plant volatiles from the same or different plant species. The preference of C. vestalis between infested and uninfested plant volatiles was tested in a choice chamber. Volatile-inexperienced wasps significantly preferred infested cabbage and infested radish volatiles, but not infested komatsuna volatiles. After exposure to infested cabbage volatiles, wasps showed a significant preference for infested cabbage volatiles, while the significant preference for infested radish volatiles that had been observed in inexperienced wasps was no longer observed. After exposure to infested komatsuna volatiles, wasps significantly preferred infested komatsuna volatiles, and the pre-exposure significant preferences for infested cabbage volatiles and infested radish volatiles remained. After exposure to infested radish volatiles, the significant preferences for infested cabbage and infested radish volatiles did not change. Furthermore, wasps showed a significant preference for infested komatsuna volatiles. The compound compositions of the volatile blends from the three infested plant species were grouped separately in a principal coordinates analysis. The experience-based cognition of C. vestalis for host-infested plant volatiles of three plant species is discussed.


Assuntos
Comportamento Animal/fisiologia , Brassicaceae/química , Mariposas/fisiologia , Compostos Orgânicos Voláteis/farmacologia , Vespas/fisiologia , Animais , Brassicaceae/parasitologia , Feminino , Interações Hospedeiro-Parasita , Larva/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Compostos Orgânicos Voláteis/química
6.
Proc Natl Acad Sci U S A ; 111(19): 7144-9, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24778218

RESUMO

Plants receive volatile compounds emitted by neighboring plants that are infested by herbivores, and consequently the receiver plants begin to defend against forthcoming herbivory. However, to date, how plants receive volatiles and, consequently, how they fortify their defenses, is largely unknown. In this study, we found that undamaged tomato plants exposed to volatiles emitted by conspecifics infested with common cutworms (exposed plants) became more defensive against the larvae than those exposed to volatiles from uninfested conspecifics (control plants) in a constant airflow system under laboratory conditions. Comprehensive metabolite analyses showed that only the amount of (Z)-3-hexenylvicianoside (HexVic) was higher in exposed than control plants. This compound negatively affected the performance of common cutworms when added to an artificial diet. The aglycon of HexVic, (Z)-3-hexenol, was obtained from neighboring infested plants via the air. The amount of jasmonates (JAs) was not higher in exposed plants, and HexVic biosynthesis was independent of JA signaling. The use of (Z)-3-hexenol from neighboring damaged conspecifics for HexVic biosynthesis in exposed plants was also observed in an experimental field, indicating that (Z)-3-hexenol intake occurred even under fluctuating environmental conditions. Specific use of airborne (Z)-3-hexenol to form HexVic in undamaged tomato plants reveals a previously unidentified mechanism of plant defense.


Assuntos
Hexanóis/metabolismo , Odorantes , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitologia , Spodoptera/crescimento & desenvolvimento , Animais , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Glicosídeos/metabolismo , Herbivoria/fisiologia , Larva/fisiologia , Solanum lycopersicum/efeitos dos fármacos , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Folhas de Planta/metabolismo , Compostos Orgânicos Voláteis/metabolismo
7.
J Chem Ecol ; 42(2): 149-55, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26757909

RESUMO

Many natural enemies of insects use honeydew as a volatile cue to locate hosts or prey, as an oviposition stimulant, and as an arrestant for foraging. The aphidophagous gall midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae) has predacious larval stages and can be used to control aphid populations, especially in greenhouses. Previous studies have shown that the honeydew, excreted by the aphid Myzus persicae, attracts A. aphidimyza, but the crucial attractants have not been identified. Using an olfactometer, we studied behavioral responses of female A. aphidimyza to volatiles emitted from honeydew excreted by the aphid Aphis gossypii on eggplants. The volatiles attracted female midges and induced oviposition. Moreover, using gas chromatography coupled with mass spectrometry (GC/MS), we identified phenylacetaldehyde as the attractant compound in the honeydew, although it did not induce oviposition in olfactometer experiments.


Assuntos
Afídeos/fisiologia , Dípteros/fisiologia , Acetaldeído/análogos & derivados , Acetaldeído/metabolismo , Animais , Comportamento Animal , Volatilização
8.
J Integr Plant Biol ; 58(4): 343-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26563972

RESUMO

Plants emit biogenic volatile organic compounds (BVOCs) causing transcriptomic, metabolomic and behavioral responses in receiver organisms. Volatiles involved in such responses are often called "plant language". Arthropods having sensitive chemoreceptors can recognize language released by plants. Insect herbivores, pollinators and natural enemies respond to composition of volatiles from plants with specialized receptors responding to different types of compounds. In contrast, the mechanism of how plants "hear" volatiles has remained obscured. In a plant-plant communication, several individually emitted compounds are known to prime defense response in receiver plants with a specific manner according to the chemical structure of each volatile compound. Further, composition and ratio of volatile compounds in the plant-released plume is important in plant-insect and plant-plant interactions mediated by plant volatiles. Studies on volatile-mediated plant-plant signaling indicate that the signaling distances are rather short, usually not longer than one meter. Volatile communication from plants to insects such as pollinators could be across distances of hundreds of meters. As many of the herbivore induced VOCs have rather short atmospheric life times, we suggest that in long-distant communications with plant volatiles, reaction products in the original emitted compounds may have additional information value of the distance to emission source together with the original plant-emitted compounds.


Assuntos
Plantas/metabolismo , Animais , Invertebrados/metabolismo , Modelos Biológicos , Doenças das Plantas/microbiologia , Transdução de Sinais , Compostos Orgânicos Voláteis/metabolismo
9.
Proc Biol Sci ; 282(1818): 20152169, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26538597

RESUMO

For a communication system to be stable, senders should convey honest information. Providing dishonest information, however, can be advantageous to senders, which imposes a constraint on the evolution of communication systems. Beyond single populations and bitrophic systems, one may ask whether stable communication systems can evolve in multitrophic systems. Consider cross-species signalling where herbivore-induced plant volatiles (HIPVs) attract predators to reduce the damage from arthropod herbivores. Such plant signals may be honest and help predators to identify profitable prey/plant types via HIPV composition and to assess prey density via the amount of HIPVs. There could be selection for dishonest signals that attract predators for protection from possible future herbivory. Recently, we described a case in which plants release a fixed, high amount of HIPVs independent of herbivore load, adopting what we labelled a 'cry-wolf' strategy. To understand when such signals evolve, we model coevolutionary interactions between plants, herbivores and predators, and show that both 'honest' and 'cry-wolf' types can emerge, depending on the assumed plant-herbivore encounter rates and herbivore population density. It is suggested that the 'cry-wolf' strategy may have evolved to reduce the risk of heavy damage in the future. Our model suggests that eco-evolutionary feedback loops involving a third species may have important consequences for the stability of this outcome.


Assuntos
Evolução Biológica , Herbivoria , Plantas/química , Comportamento Predatório , Animais , Modelos Biológicos , Plantas/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
10.
J Chem Ecol ; 41(9): 801-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26302986

RESUMO

Arthropodal natural enemies respond to volatiles from plants infested by their prey/host herbivores (herbivore-induced plant volatiles; HIPVs). However, the relative importance of HIPV blends vs. each compound in the blend in attracting natural enemies is not fully understood. In this study, we investigated the response of a parasitic wasp, Aphidius ervi, to HIPVs that were specific or nonspecific to infestations by its host aphid, Acyrthosiphon pisum. To select such compounds, we compared the volatiles emitted from broad bean plants infested by either A. pisum (host) or by Aphis craccivora (nonhost), and selected the host-specific HIPVs ß-myrcene, n-octanal, and α-phellandrene, and host-nonspecific HIPVs (E)-ß-ocimene, γ-terpinene, and linalool as test compounds. For each compound, we used a range that covered the amounts emitted from infested broad bean plants for bioassays. Female wasps preferred n-octanal and (E)-ß-ocimene at 10-ng and 30-ng doses over clean air. Interestingly, the wasps preferred α-phellandrene at 0.1-ng and 30-ng doses, but not at 1-ng and 10-ng doses. The wasps repelled linalool over clean air at 1-ng and 0.1-ng doses. We then mixed the equivalent amounts of the six compounds to test the effect of the blend. The wasps responded to a blend of six HIPV components at all concentrations tested (0.001 ng each to 5 ng each). These results suggested that the blend provided more useful information for female wasps than the individual compounds. The possible use of the single component and the blend for the biological control of A. ervi is discussed.


Assuntos
Afídeos/fisiologia , Herbivoria , Interações Hospedeiro-Parasita , Vicia faba/parasitologia , Compostos Orgânicos Voláteis/metabolismo , Vespas/fisiologia , Animais , Afídeos/parasitologia , Feminino , Masculino , Controle Biológico de Vetores , Vicia faba/fisiologia , Vespas/parasitologia
11.
J Biol Chem ; 288(36): 26078-26088, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23888054

RESUMO

Green leaf volatiles (GLVs) consisting of six-carbon aldehydes, alcohols, and their esters, are biosynthesized through the action of fatty acid hydroperoxide lyase (HPL), which uses fatty acid hydroperoxides as substrates. GLVs form immediately after disruption of plant leaf tissues by herbivore attacks and mechanical wounding and play a role in defense against attackers that attempt to invade through the wounds. The fates and the physiological significance of the counterparts of the HPL reaction, the 12/10-carbon oxoacids that are formed from 18/16-carbon fatty acid 13-/11-hydroperoxides, respectively, are largely unknown. In this study, we detected monogalactosyl diacylglycerols (MGDGs) containing the 12/10-carbon HPL products in disrupted leaf tissues of Arabidopsis, cabbage, tobacco, tomato, and common bean. They were identified as an MGDG containing 12-oxo-9-hydroxy-(E)-10-dodecenoic acid and 10-oxo-7-hydroxy-(E)-8-decenoic acid and an MGDG containing two 12-oxo-9-hydroxy-(E)-10-dodecenoic acids as their acyl groups. Analyses of Arabidopsis mutants lacking HPL indicated that these MGDGs were formed enzymatically through an active HPL reaction. Thus, our results suggested that in disrupted leaf tissues, MGDG-hydroperoxides were cleaved by HPL to form volatile six-carbon aldehydes and non-volatile 12/10-carbon aldehyde-containing galactolipids. Based on these results, we propose a novel oxylipin pathway that does not require the lipase reaction to form GLVs.


Assuntos
Arabidopsis/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Galactolipídeos/metabolismo , Óleos Voláteis/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/metabolismo , Aldeído Liases/genética , Aldeído Liases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica/genética , Brassica/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Galactolipídeos/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Phaseolus/genética , Phaseolus/metabolismo , Folhas de Planta/genética , Nicotiana/genética , Nicotiana/metabolismo
12.
Ecol Evol ; 14(2): e11057, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38384830

RESUMO

Plants exchange a variety of information intra- and interspecifically by using various mediating cues. For example, plant individuals that are injured by herbivores release volatile chemicals, which induce receiver plants to express anti-herbivore resistance. Remarkably, some plant species were known to represent kin specificity in the response, where cues from a damaged individual induce a higher level of resistance in a kin receiver than in a non-kin receiver. Such higher sensitivity to warning cues from kin could be advantageous via two mechanisms. If each herbivore tends to attack plants with a certain genotype, plants should be more sensitive to warning cues from kin that share genetic properties. In addition, if herbivores successively attack the neighboring plant with a high probability, and if related plants tend to grow in close proximity, plants may be more sensitive to warning cues from neighboring kin under the presence of a trade-off between sensitivity to kin and non-kin. In the present study, we constructed a mathematical model including those mechanisms to investigate the evolutionary process of the higher sensitivity to warning cues from kin than sensitivities to cues from non-kin. According to the analysis of evolutionary dynamics, we revealed that both mechanisms could contribute, although higher sensitivity to cues from kin is more likely to evolve when the spatial range of competition is greater than the range of effective alarm cues. This result highlights the importance of the competition regime in the evolution of signaling among kin.

13.
Pest Manag Sci ; 80(2): 426-432, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37714819

RESUMO

BACKGROUND: Booklice Liposcelis bostrychophila are frequently found almost everywhere, including private houses and cleanrooms of factories and institutes. They often cause serious hygienic as well as agricultural problems, but a useful trap has not been developed so far. Therefore, an effective way to monitor and capture booklice is required. RESULTS: We here identified a new attractant, 2,3,5,6-tetramethylpyrazine (TMP), which efficiently captured booklice in combination with UV light. When booklice placed at both right and left edges of an assay tray were exposed to light stimulus from the center, test insects gathered at the center. The attraction was stronger with shorter wavelengths than longer ones: 365-nm ultraviolet (UV) light showed the strongest attraction of four tested light wavelengths. We found that cocoa powder attracted booklice weakly but significantly under total darkness. Furthermore, the cocoa smell was confirmed to enhance the attraction to light at all tested wavelengths irrespective of the difference between two brands of cocoa powders. Gas chromatography-mass spectrometry indicated that both cocoa products contain TMP as a major odor compound. Exposure of booklice to TMP significantly enhanced the attraction to UV light: the combined use with TMP almost doubled the attraction compared to the light only. By contrast, TMP homologs, pyrazine and dimethylpyrazines, showed strong repellent activities under UV light exposure. CONCLUSION: TMP enhanced the UV light attraction for booklice while pyrazine and dimethylpyrazines diminished it. Use of these attractant and repellent pyrazine derivatives together with UV light would enable us to develop a practical new way to monitor and capture booklice. © 2023 Society of Chemical Industry.


Assuntos
Repelentes de Insetos , Raios Ultravioleta , Animais , Insetos , Pirazinas/farmacologia , Repelentes de Insetos/farmacologia
14.
Exp Appl Acarol ; 59(3): 263-73, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23011105

RESUMO

Plants show defensive responses after exposure to volatiles from neighbouring plants infested by herbivores. When a plant's neighbours host only species of herbivores that do not feed on the plant itself, the plant can conserve energy by maintaining a low defence level. An intriguing question is whether plants respond differently to volatiles from plants infested by herbivores that pose greater or lesser degrees of danger. We examined the secretion of extrafloral nectar (EFN) in lima bean plants exposed to volatiles from cabbage plants infested by common cutworm, two-spotted spider mites, or diamondback moth larvae. Although the first two herbivore species feed on lima bean plants, diamondback moth larvae do not. As a control, lima bean plants were exposed to volatiles from uninfested cabbage plants. Only when exposed to volatiles from cabbage plants infested by spider mites did lima bean plants significantly increase their EFN secretion compared with the control. Increased EFN secretion can function as an indirect defence by supplying the natural enemies of herbivores with an alternative food source. Of the three herbivore species, spider mites were the most likely to move from cabbage plants to lima bean plants and presumably posed the greatest threat. Although chemical analyses showed differences among treatments in volatiles produced by herbivore-infested cabbage plants, which compounds or blends triggered the increased secretion of EFN by lima bean plants remains unclear. Thus, our results show that plants may tune their defence levels according to herbivore risk level.


Assuntos
Brassica/fisiologia , Herbivoria , Mariposas/fisiologia , Phaseolus/fisiologia , Tetranychidae/fisiologia , Animais , Feminino , Larva/fisiologia , Phaseolus/química , Néctar de Plantas/química , Néctar de Plantas/fisiologia , Compostos Orgânicos Voláteis/química
15.
Front Plant Sci ; 14: 1141338, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649992

RESUMO

Plants exposed to volatiles emitted from artificially damaged conspecific or heterospecific plants exhibit increased resistance to herbivorous insects. Here, we examined whether volatiles from artificially damaged weeds affect maize growth and reproduction. Seven days after germination, maize seedlings were exposed to volatiles emitted by artificially damaged mugwort (Artemisia indica var. maximowiczii) or tall goldenrod (Solidago altissima) plants either separately, or as a mixture of the two, for seven days. Unexposed seedlings were used as controls. Treated and control seedlings were cultivated in an experimental field without any insecticides applied. Plants exposed to either of the three volatile treatments sustained significantly less damage than controls. Additionally, seedlings exposed to either goldenrod or mixed volatiles produced more leaves and tillers than control plants. Furthermore, a significant increase in the number of ears was observed in plants exposed to the volatile mixture. In all treated plants, ear sugar content was significantly higher than that in the controls. Further, we cultivated seedlings that were either exposed to the volatile mixture or unexposed, under the conventional farming method using pesticides. Similar significant differences were observed for sugar content, number of tillers, leaves, damaged leaves, and ears. Laboratory experiments were conducted to further evaluate the mechanisms involved in the improved performance of volatile-treated plants. A significant reduction in the growth of common armyworm (Mythimna separata) larvae was observed when maize plants were exposed to the volatile mixture. This treatment did not affect the amount of jasmonic acid in the seedlings, whereas salicylic acid content increased upon exposure. The characteristic differences in chemical composition of mugwort and goldenrod volatiles were confirmed and, in turn, the volatile mixture differed significantly from the volatiles of either species.

16.
Nat Commun ; 14(1): 677, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755045

RESUMO

Volatiles from herbivore-infested plants function as a chemical warning of future herbivory for neighboring plants. (Z)-3-Hexenol emitted from tomato plants infested by common cutworms is taken up by uninfested plants and converted to (Z)-3-hexenyl ß-vicianoside (HexVic). Here we show that a wild tomato species (Solanum pennellii) shows limited HexVic accumulation compared to a domesticated tomato species (Solanum lycopersicum) after (Z)-3-hexenol exposure. Common cutworms grow better on an introgression line containing an S. pennellii chromosome 11 segment that impairs HexVic accumulation, suggesting that (Z)-3-hexenol diglycosylation is involved in the defense of tomato against herbivory. We finally reveal that HexVic accumulation is genetically associated with a uridine diphosphate-glycosyltransferase (UGT) gene cluster that harbors UGT91R1 on chromosome 11. Biochemical and transgenic analyses of UGT91R1 show that it preferentially catalyzes (Z)-3-hexenyl ß-D-glucopyranoside arabinosylation to produce HexVic in planta.


Assuntos
Solanum lycopersicum , Solanum , Compostos Orgânicos Voláteis , Solanum lycopersicum/genética , Pentosiltransferases , Glicosiltransferases/genética , Compostos Orgânicos Voláteis/análise , Herbivoria
17.
New Phytol ; 193(4): 1009-1021, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22243440

RESUMO

Plants under herbivore attack emit mixtures of volatiles (herbivore-induced plant volatiles, HIPVs) that can attract predators of the herbivores. Although the composition of HIPVs should be critical for the attraction, most studies of transgenic plant-emitted volatiles have simply addressed the effect of trans-volatiles without embedding in other endogenous plant volatiles. We investigated the abilities of transgenic wishbone flower plants (Torenia hybrida and Torenia fournieri) infested with spider mites, emitting a trans-volatile ((E)-ß-ocimene) in the presence or absence of endogenous volatiles (natural HIPVs and/or floral volatiles), to attract predatory mites (Phytoseiulus persimilis). In both olfactory- and glasshouse-based assays, P. persimilis females were attracted to natural HIPVs from infested wildtype (wt) plants of T. hybrida but not to those of T. fournieri. The trans-volatile enhanced the ability to attract P. persimilis only when added to an active HIPV blend from the infested transgenic T. hybrida plants, in comparison with the attraction by infested wt plants. Intriguingly, floral volatiles abolished the enhanced attractive ability of T. hybrida transformants, although floral volatiles themselves did not elicit any attraction or avoidance behavior. Predator responses to trans-volatiles were found to depend on various background volatiles (e.g. natural HIPVs and floral volatiles) endogenously emitted by the transgenic plants.


Assuntos
Alcenos/farmacologia , Magnoliopsida/metabolismo , Magnoliopsida/parasitologia , Ácaros/fisiologia , Tetranychidae/patogenicidade , Monoterpenos Acíclicos , Alcenos/metabolismo , Animais , Feminino , Flores/metabolismo , Herbivoria , Interações Hospedeiro-Parasita , Magnoliopsida/genética , Infestações por Ácaros , Ácaros/efeitos dos fármacos , Feromônios/farmacologia , Plantas Geneticamente Modificadas , Comportamento Predatório/fisiologia , Olfato , Tetranychidae/fisiologia , Compostos Orgânicos Voláteis/metabolismo
18.
Mol Ecol ; 21(22): 5624-35, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23043221

RESUMO

Different organisms compensate for, and adapt to, environmental changes in different ways. In this way, environmental changes affect animal-plant interactions. In this study, we assessed the effect of temperature on a tritrophic system of the lima bean, the herbivorous spider mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. In this system, the plant defends itself against T. urticae by emitting volatiles that attract P. persimilis. Over 20-40 °C, the emission of volatiles by infested plants and the subsequent attraction of P. persimilis peaked at 30 °C, but the number of eggs laid by T. urticae adults and the number of eggs consumed by P. persimilis peaked at 35 °C. This indicates that the spider mites and predatory mites performed best at a higher temperature than that at which most volatile attractants were produced. Our data from transcriptome pyrosequencing of the mites found that P. persimilis up-regulated gene families for heat shock proteins (HSPs) and ubiquitin-associated proteins, whereas T. urticae did not. RNA interference-mediated gene suppression in P. persimilis revealed differences in temperature responses. Predation on T. urticae eggs by P. persimilis that had been fed PpHsp70-1 dsRNA was low at 35 °C but not at 25 °C when PpHsp70-1 expression was very high. Overall, our molecular and behavioural approaches revealed that the mode and tolerance of lima bean, T. urticae and P. persimilis are distinctly affected by temperature variability, thereby making their tritrophic interactions temperature dependent.


Assuntos
Phaseolus/metabolismo , Comportamento Predatório/fisiologia , Temperatura , Tetranychidae/fisiologia , Animais , Feminino , Herbivoria , Ácaros/genética , Ácaros/fisiologia , Oviposição , Óvulo , Feromônios/biossíntese , Interferência de RNA , Tetranychidae/genética , Transcriptoma , Compostos Orgânicos Voláteis/metabolismo
19.
Plant J ; 61(1): 46-57, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19891707

RESUMO

A pre-infestation of the white-backed planthopper (WBPH), Sogatella furcifera Horváth, conferred resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) in rice (Oryza sativa L.) under both laboratory and field conditions. The infestation of another planthopper species, the brown planthopper (BPH) Nilaparvata lugens Stål, did not significantly reduce the incidence of bacterial blight symptoms. A large-scale screening using a rice DNA microarray and quantitative RT-PCR revealed that WBPH infestation caused the upregulation of more defence-related genes than did BPH infestation. Hydroperoxide lyase 2 (OsHPL2), an enzyme for producing C(6) volatiles, was upregulated by WBPH infestation, but not by BPH infestation. One C(6) volatile, (E)-2-hexenal, accumulated in rice after WBPH infestation, but not after BPH infestation. A direct application of (E)-2-hexenal to a liquid culture of Xoo inhibited the growth of the bacterium. Furthermore, a vapour treatment of rice plants with (E)-2-hexenal induced resistance to bacterial blight. OsHPL2-overexpressing transgenic rice plants exhibited increased resistance to bacterial blight. Based on these data, we conclude that OsHPL2 and its derived (E)-2-hexenal play some role in WBPH-induced resistance in rice.


Assuntos
Aldeído Liases/fisiologia , Sistema Enzimático do Citocromo P-450/fisiologia , Hemípteros/fisiologia , Oryza/imunologia , Oryza/microbiologia , Xanthomonas/patogenicidade , Aldeído Liases/genética , Aldeídos/metabolismo , Aldeídos/farmacologia , Animais , Sistema Enzimático do Citocromo P-450/genética , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/metabolismo , Oryza/parasitologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Plant Cell Physiol ; 52(3): 588-96, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21296762

RESUMO

Plants emit specific blends of volatile organic compounds (VOCs) in response to mechanical wounding. Such induced VOCs have been shown to mediate in plant and interplant communication, yet little is known about the time- and dose-response relationships in VOC-mediated communications. Here, we employed young seedlings of Chrysanthemum cinerariaefolium to examine the effects of volatiles emitted by artificially damaged seedlings on the biosynthesis of the natural insecticides pyrethrins in intact conspecific plants. Wounded leaves emitted (Z)-3-hexenal, (E)-2-hexenal, (Z)-3-hexen-1-ol, (Z)-3-hexen-1-yl acetate and (E)-ß-farnesene as dominant wound-induced VOCs. Exposing intact seedlings to a mixture of these VOCs at concentrations mimicking those emitted from wounded seedlings, as well as placing the intact seedlings next to the wounded seedlings, resulted in enhanced pyrethrin contents in the intact seedlings. Thus we quantified mRNA transcripts of 1-deoxy-D-xylulose 5-phosphate synthase (DXS), chrysanthemyl diphosphate synthase (CPPase), 13-lipoxygenase (13-LOX) and allene oxide synthase (AOS) genes in intact seedlings exposed to the VOC mixture to show that DXS and 13-LOX gene expression reached a maximum at 3 h, whereas CPPase and AOS reached it at 6 h. Interestingly, both increasing and decreasing the VOC mixture concentrations from those observed on injury reduced the expression of DXS, CPPase and AOS genes to the control level. Also, separating the VOC mixture into individual components eliminated the ability to enhance the expression of all the biosynthetic genes examined. This is the first study showing that the wound-induced VOCs function as a blend to control the biosynthesis of second metabolites at specific concentrations.


Assuntos
Chrysanthemum/efeitos dos fármacos , Chrysanthemum/metabolismo , Piretrinas/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Chrysanthemum/genética , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Piretrinas/química , Plântula/efeitos dos fármacos , Plântula/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA