Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
EMBO Rep ; 24(7): e56021, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37306233

RESUMO

MicroRNA (miRNA) biogenesis is tightly regulated to maintain distinct miRNA expression patterns. Almost half of mammalian miRNAs are generated from miRNA clusters, but this process is not well understood. We show here that Serine-arginine rich splicing factor 3 (SRSF3) controls the processing of miR-17-92 cluster miRNAs in pluripotent and cancer cells. SRSF3 binding to multiple CNNC motifs downstream of Drosha cleavage sites within miR-17-92 is required for the efficient processing of the cluster. SRSF3 depletion specifically compromises the processing of two paralog miRNAs, miR-17 and miR-20a. In addition to SRSF3 binding to the CNNC sites, the SRSF3 RS-domain is essential for miR-17-92 processing. SHAPE-MaP probing demonstrates that SRSF3 binding disrupts local and distant base pairing, resulting in global changes in miR-17-92 RNA structure. Our data suggest a model where SRSF3 binding, and potentially its RS-domain interactions, may facilitate an RNA structure that promotes miR-17-92 processing. SRSF3-mediated increase in miR-17/20a levels inhibits the cell cycle inhibitor p21, promoting self-renewal in normal and cancer cells. The SRSF3-miR-17-92-p21 pathway operates in colorectal cancer, linking SRSF3-mediated pri-miRNA processing and cancer pathogenesis.


Assuntos
MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , Mamíferos/genética , Mamíferos/metabolismo
2.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628422

RESUMO

Extracellular vesicles (EVs) function as conveyors of fatty acids (FAs) and other bioactive lipids and can modulate the gene expression and behavior of target cells. EV lipid composition influences the fluidity and stability of EV membranes and reflects the availability of lipid mediator precursors. Fibroblast-like synoviocytes (FLSs) secrete EVs that transport hyaluronic acid (HA). FLSs play a central role in inflammation, pannus formation, and cartilage degradation in joint diseases, and EVs have recently emerged as potential mediators of these effects. The aim of the present study was to follow temporal changes in HA and EV secretion by normal FLSs, and to characterize the FA profiles of FLSs and EVs during proliferation. The methods used included nanoparticle tracking analysis, confocal laser scanning microscopy, sandwich-type enzyme-linked sorbent assay, quantitative PCR, and gas chromatography. The expression of hyaluronan synthases 1-3 in FLSs and HA concentrations in conditioned media decreased during cell proliferation. This was associated with elevated proportions of 20:4n-6 and total n-6 polyunsaturated FAs (PUFAs) in high-density cells, reductions in n-3/n-6 PUFA ratios, and up-regulation of cluster of differentiation 44, tumor necrosis factor α, peroxisome proliferator-activated receptor (PPAR)-α, and PPAR-γ. Compared to the parent FLSs, 16:0, 18:0, and 18:1n-9 were enriched in the EV fraction. EV counts decreased during cell growth, and 18:2n-6 in EVs correlated with the cell count. To conclude, FLS proliferation was featured by increased 20:4n-6 proportions and reduced n-3/n-6 PUFA ratios, and FAs with a low degree of unsaturation were selectively transferred from FLSs into EVs. These FA modifications have the potential to affect membrane fluidity, biosynthesis of lipid mediators, and inflammatory processes in joints, and could eventually provide tools for translational studies to counteract cartilage degradation in inflammatory joint diseases.


Assuntos
Vesículas Extracelulares , Sinoviócitos , Vesículas Extracelulares/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Fibroblastos/metabolismo , Humanos , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , PPAR gama/metabolismo , Sinoviócitos/metabolismo
3.
Biochem J ; 475(10): 1755-1772, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29626161

RESUMO

Extracellular nucleotides are used as signaling molecules by several cell types. In epidermis, their release is triggered by insults such as ultraviolet radiation, barrier disruption, and tissue wounding, and by specific nerve terminals firing. Increased synthesis of hyaluronan, a ubiquitous extracellular matrix glycosaminoglycan, also occurs in response to stress, leading to the attractive hypothesis that nucleotide signaling and hyaluronan synthesis could also be linked. In HaCaT keratinocytes, ATP caused a rapid and strong but transient activation of hyaluronan synthase 2 (HAS2) expression via protein kinase C-, Ca2+/calmodulin-dependent protein kinase II-, mitogen-activated protein kinase-, and calcium response element-binding protein-dependent pathways by activating the purinergic P2Y2 receptor. Smaller but more persistent up-regulation of HAS3 and CD44, and delayed up-regulation of HAS1 were also observed. Accumulation of peri- and extracellular hyaluronan followed 4-6 h after stimulation, an effect further enhanced by the hyaluronan precursor glucosamine. AMP and adenosine, the degradation products of ATP, markedly inhibited HAS2 expression and, despite concomitant up-regulation of HAS1 and HAS3, inhibited hyaluronan synthesis. Functionally, ATP moderately increased cell migration, whereas AMP and adenosine had no effect. Our data highlight the strong influence of adenosinergic signaling on hyaluronan metabolism in human keratinocytes. Epidermal insults are associated with extracellular ATP release, as well as rapid up-regulation of HAS2/3, CD44, and hyaluronan synthesis, and we show here that the two phenomena are linked. Furthermore, as ATP is rapidly degraded, the opposite effects of its less phosphorylated derivatives facilitate a rapid shut-off of the hyaluronan response, providing a feedback mechanism to prevent excessive reactions when more persistent signals are absent.


Assuntos
Trifosfato de Adenosina/farmacologia , Cálcio/metabolismo , Epiderme/enzimologia , Hialuronan Sintases/metabolismo , Queratinócitos/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Epiderme/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Hialuronan Sintases/genética , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação , Receptores Purinérgicos P2Y2/genética , Transdução de Sinais
4.
Cell Mol Life Sci ; 73(16): 3183-204, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26883802

RESUMO

Hyaluronan content is a powerful prognostic factor in many cancer types, but the molecular basis of its synthesis in cancer still remains unclear. Hyaluronan synthesis requires the transport of hyaluronan synthases (HAS1-3) from Golgi to plasma membrane (PM), where the enzymes are activated. For the very first time, the present study demonstrated a rapid recycling of HAS3 between PM and endosomes, controlled by the cytosolic levels of the HAS substrates UDP-GlcUA and UDP-GlcNAc. Depletion of UDP-GlcNAc or UDP-GlcUA shifted the balance towards HAS3 endocytosis, and inhibition of hyaluronan synthesis. In contrast, UDP-GlcNAc surplus suppressed endocytosis and lysosomal decay of HAS3, favoring its retention in PM, stimulating hyaluronan synthesis, and HAS3 shedding in extracellular vesicles. The concentration of UDP-GlcNAc also controlled the level of O-GlcNAc modification of HAS3. Increasing O-GlcNAcylation reproduced the effects of UDP-GlcNAc surplus on HAS3 trafficking, while its suppression showed the opposite effects, indicating that O-GlcNAc signaling is associated to UDP-GlcNAc supply. Importantly, a similar correlation existed between the expression of GFAT1 (the rate limiting enzyme in UDP-GlcNAc synthesis) and hyaluronan content in early and deep human melanomas, suggesting the association of UDP-sugar metabolism in initiation of melanomagenesis. In general, changes in glucose metabolism, realized through UDP-sugar contents and O-GlcNAc signaling, are important in HAS3 trafficking, hyaluronan synthesis, and correlates with melanoma progression.


Assuntos
Glucuronosiltransferase/metabolismo , Ácido Hialurônico/metabolismo , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Pele/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Acetilglucosamina/metabolismo , Acilação , Animais , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Progressão da Doença , Endocitose , Humanos , Hialuronan Sintases , Melanoma/patologia , Transporte Proteico , Pele/patologia , Neoplasias Cutâneas/patologia , Uridina Difosfato N-Acetilglicosamina/metabolismo
5.
J Biol Chem ; 290(19): 12379-93, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25809479

RESUMO

The proinflammatory cytokine interleukin-1ß (IL-1ß) attracts leukocytes to sites of inflammation. One of the recruitment mechanisms involves the formation of extended, hyaluronan-rich pericellular coats on local fibroblasts, endothelial cells, and epithelial cells. In the present work, we studied how IL-1ß turns on the monocyte adhesion of the hyaluronan coat on human keratinocytes. IL-1ß did not influence hyaluronan synthesis or increase the amount of pericellular hyaluronan in these cells. Instead, we found that the increase in the hyaluronan-dependent monocyte binding was associated with the CD44 of the keratinocytes. Although IL-1ß caused a small increase in the total amount of CD44, a more marked impact was the decrease of CD44 phosphorylation at serine 325. At the same time, IL-1ß increased the association of CD44 with ezrin and complex formation of CD44 with itself. Treatment of keratinocyte cultures with KN93, an inhibitor of calmodulin kinase 2, known to phosphorylate Ser-325 in CD44, caused similar effects as IL-1ß (i.e. homomerization of CD44 and its association with ezrin) and resulted in increased monocyte binding to keratinocytes in a hyaluronan-dependent way. Overexpression of wild type CD44 standard form, but not a corresponding CD44 mutant mimicking the Ser-325-phosphorylated form, was able to induce monocyte binding to keratinocytes. In conclusion, treatment of human keratinocytes with IL-1ß changes the structure of their hyaluronan coat by influencing the amount, post-translational modification, and cytoskeletal association of CD44, thus enhancing monocyte retention on keratinocytes.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Epiderme/metabolismo , Receptores de Hialuronatos/metabolismo , Interleucina-1beta/metabolismo , Queratinócitos/citologia , Serina/química , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular , Citoesqueleto/metabolismo , Éxons , Humanos , Ácido Hialurônico/química , Inflamação , Leucócitos/citologia , Microscopia Confocal , Microscopia de Fluorescência , Monócitos/citologia , Fosforilação , Multimerização Proteica , Processamento de Proteína Pós-Traducional
6.
Exp Cell Res ; 337(1): 1-15, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26222208

RESUMO

Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells.


Assuntos
Adesão Celular , Movimento Celular , Proliferação de Células , Glucuronosiltransferase/metabolismo , Melanoma/enzimologia , Linhagem Celular Tumoral , Forma Celular , Regulação para Baixo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Expressão Gênica , Glucuronosiltransferase/genética , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Hialuronan Sintases , Ácido Hialurônico/metabolismo , Sistema de Sinalização das MAP Quinases , Melanoma/patologia , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
7.
Redox Biol ; 69: 103031, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38184997

RESUMO

The Kelch-like ECH-associated protein 1 (KEAP1) - Nuclear factor erythroid 2 -related factor 2 (NRF2) pathway is the major transcriptional stress response system in cells against oxidative and electrophilic stress. NRF2 is frequently constitutively active in many cancers, rendering the cells resistant to chemo- and radiotherapy. Loss-of-function (LOF) mutations in the repressor protein KEAP1 are common in non-small cell lung cancer, particularly adenocarcinoma. While the mutations can occur throughout the gene, they are enriched in certain areas, indicating that these may have unique functional importance. In this study, we show that in the GSEA analysis of TCGA lung adenocarcinoma RNA-seq data, the KEAP1 mutations in R320 and R470 were associated with enhanced Tumor Necrosis Factor alpha (TNFα) - Nuclear Factor kappa subunit B (NFκB) signaling as well as MYC and MTORC1 pathways. To address the functional role of these hotspot mutations, affinity purification and mass spectrometry (AP-MS) analysis of wild type (wt) KEAP1 and its mutation forms, R320Q and R470C were employed to interrogate differences in the protein interactome. We identified TNF receptor associated factor 2 (TRAF2) as a putative protein interaction partner. Both mutant KEAP1 forms showed increased interaction with TRAF2 and other anti-apoptotic proteins, suggesting that apoptosis signalling could be affected by the protein interactions. A549 lung adenocarcinoma cells overexpressing mutant KEAP1 showed high TRAF2-mediated NFκB activity and increased protection against apoptosis, XIAP being one of the key proteins involved in anti-apoptotic signalling. To conclude, KEAP1 R320Q and R470C and its interaction with TRAF2 leads to activation of NFκB pathway, thereby protecting against apoptosis.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Adenocarcinoma de Pulmão/genética , Apoptose/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Mutação
8.
Histochem Cell Biol ; 138(6): 895-911, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22825838

RESUMO

In many cancers hyaluronan content is increased, either by tumor cells or the surrounding stromal cells and this increased hyaluronan content correlates with unfavorable clinical prognosis. In the present work, we studied the effects of melanoma cell (aggressive melanoma cell line C8161)-derived factors on fibroblast hyaluronan synthesis, intracellular signaling, MMP expression and invasion. Treatment of the fibroblast cultures with melanoma cell conditioned medium (CM) caused accumulation of hyaluronan in the culture medium and formation of thick pericellular hyaluronan coat and hyaluronan cables. The expression of Has2 was increased approximately 20-fold by the C8161 melanoma cell CM, while Has1 and Has3 were increased twofold. Knock-down of Has2 expression with siRNA showed that Has2 was responsible for the increased hyaluronan synthesis induced by the melanoma cell CM. To find out the signaling routes, which led to Has2 upregulation, the phosphorylation profiles of 46 kinases were screened with phosphokinase array kit. Melanoma cell CM treatment strongly induced a rapid phosphorylation of p38, JNK, AKT, CREB, HSP27, STAT3 and cJUN. Treatment of the fibroblasts with specific inhibitors of PI3K, AKT and p38 reduced the melanoma cell CM-induced hyaluronan secretion, while the inhibitor of PDGFR totally blocked it. In addition, siRNA for PDGFRα/ß inhibited Has2 upregulation in melanoma cell CM-treated fibroblasts. In parallel with the increased hyaluronan synthesis the melanoma cell CM-treated fibroblasts showed spindle shape, numerous long cell protrusions, enhanced MMP expression and increased invasion into collagen-Cultrex matrix. siRNA blocking of Has2 or PDGFRα/ß expression reversed the stimulatory effect of melanoma cell CM on fibroblast invasion. PDGF secreted by melanoma cells thus mediated fibroblasts activation, with HAS2 upregulation as a major factor in the fibroblast response. This effect on stromal matrix is suggested to favor tumor growth.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Fibroblastos/efeitos dos fármacos , Glucuronosiltransferase/metabolismo , Ácido Hialurônico/biossíntese , Melanoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Células Cultivadas , Derme/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Glucuronosiltransferase/biossíntese , Humanos , Hialuronan Sintases , Melanoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Relação Estrutura-Atividade , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
J Invest Dermatol ; 142(11): 3041-3051.e10, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35580697

RESUMO

The tumor microenvironment, with distinctive cell types and a complex extracellular matrix has a tremendous impact on cancer progression. In this study, we investigated the effects of proinflammatory (M1) and immunosuppressive (M2) macrophages on hyaluronan (HA) matrix formation and inflammatory response in melanoma cells. Proinflammatory factors secreted from M1 macrophages stimulated the formation of a thick pericellular HA matrix in melanoma cells due to upregulation of HA synthase 2 (HAS2). HAS2 silencing reversed the effect of M1 conditioned medium on pericellular HA coat formation, and interestingly, it also partly downregulated the M1 conditioned medium‒induced upregulation of inflammation-related genes (IL1ß, IL6), as did the inhibitors for TNFR and IKKγ. Gene set enrichment analysis revealed that genes related to inflammatory responses and TNF-α signaling via NF-κB are enriched in the M1 conditioned medium‒treated melanoma cells. Moreover, the expression of matrix metalloproteinase 9 and three-dimensional cell invasion were induced in these cells, whereas M2 macrophages had no effect on HA synthesis, inflammatory response, or invasion. Our results indicate that the activation of TNFR-NF-κB signaling in M1 conditioned medium‒treated cells leads to HAS2 upregulation, which associates with a protumor inflammatory and invasive phenotype of melanoma cells.


Assuntos
Melanoma , NF-kappa B , Humanos , NF-kappa B/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ácido Hialurônico/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Inflamação/patologia , Melanoma/patologia , Microambiente Tumoral
10.
Front Oncol ; 11: 811434, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127523

RESUMO

The incidence of cutaneous melanoma is rapidly increasing worldwide. Cutaneous melanoma is an aggressive type of skin cancer, which originates from malignant transformation of pigment producing melanocytes. The main risk factor for melanoma is ultraviolet (UV) radiation, and thus it often arises from highly sun-exposed skin areas and is characterized by a high mutational burden. In addition to melanoma-associated mutations such as BRAF, NRAS, PTEN and cell cycle regulators, the expansion of melanoma is affected by the extracellular matrix surrounding the tumor together with immune cells. In the early phases of the disease, hyaluronan is the major matrix component in cutaneous melanoma microenvironment. It is a high-molecular weight polysaccharide involved in several physiological and pathological processes. Hyaluronan is involved in the inflammatory reactions associated with UV radiation but its role in melanomagenesis is still unclear. Although abundant hyaluronan surrounds epidermal and dermal cells in normal skin and benign nevi, its content is further elevated in dysplastic lesions and local tumors. At this stage hyaluronan matrix may act as a protective barrier against melanoma progression, or alternatively against immune cell attack. While in advanced melanoma, the content of hyaluronan decreases due to altered synthesis and degradation, and this correlates with poor prognosis. This review focuses on hyaluronan matrix in cutaneous melanoma and how the changes in hyaluronan metabolism affect the progression of melanoma.

11.
J Investig Med ; 68(2): 383-391, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31672719

RESUMO

Metformin is the first-line drug in the treatment of type 2 diabetes worldwide based on its effectiveness and cardiovascular safety. Currently metformin is increasingly used during pregnancy in women with gestational diabetes mellitus, even if the long-term effects of metformin on offspring are not exactly known. We have previously shown that high glucose concentration increases hyaluronan (HA) production of cultured human vascular smooth muscle cells (VSMC) via stimulating the expression of hyaluronan synthase 2 (HAS2). This offers a potential mechanism whereby hyperglycemia leads to vascular macroangiopathy. In this study, we examined whether gestational metformin use affects HA content in the aortic wall of mouse offspring in vivo. We also examined the effect of metformin on HA synthesis by cultured human VSMCs in vitro. We found that gestational metformin use significantly decreased HA content in the intima-media of mouse offspring aortas. In accordance with this, the synthesis of HA by VSMCs was also significantly decreased in response to treatment with metformin. This decrease in HA synthesis was shown to be due to the reduction of both the expression of HAS2 and the amount of HAS substrates, particularly UDP-N-acetylglucosamine. As shown here, gestational metformin use is capable to program reduced HA content in the vascular wall of the offspring strongly supporting the idea, that metformin possesses long-term vasculoprotective effects.


Assuntos
Ácido Hialurônico/antagonistas & inibidores , Ácido Hialurônico/biossíntese , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Humanos , Recém-Nascido , Masculino , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Gravidez
12.
J Invest Dermatol ; 139(9): 1993-2003.e4, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30935974

RESUMO

Skin is constantly exposed to UVR, the most critical risk factor for melanoma development. Hyaluronan is abundant in the epidermal extracellular matrix and may undergo degradation by UVR. It is hypothesized that an intact hyaluronan coat around the cells protects against various agents including UVR, whereas hyaluronan fragments promote inflammation and tumorigenesis. We investigated whether hyaluronan contributes to the UVB-induced inflammatory responses in primary melanocytes. A single dose of UVB suppressed hyaluronan secretion and the expression of hyaluronan synthases HAS2 and HAS3, the hyaluronan receptor CD44, and the hyaluronidase HYAL2, as well as induced the expression of inflammatory mediators IL6, IL8, CXCL1, and CXCL10. Silencing HAS2 and CD44 partly inhibited the inflammatory response, suggesting that hyaluronan coat is involved in the process. UVB alone caused little changes in the coat, but its removal with hyaluronidase during the recovery from UVB exposure dramatically enhanced the surge of these inflammatory mediators via TLR4, p38, and NF-κB. Interestingly, exogenous hyaluronan fragments did not reproduce the inflammatory effects of hyaluronidase. We hypothesize that the hyaluronan coat on melanocytes is a sensor of tissue injury. Combined with UVB exposure, repeated injuries to the hyaluronan coat could maintain a sustained inflammatory state associated with melanomagenesis.


Assuntos
Epiderme/efeitos da radiação , Ácido Hialurônico/efeitos da radiação , Melanócitos/imunologia , Transdução de Sinais/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Carcinogênese/imunologia , Carcinogênese/efeitos da radiação , Células Cultivadas , Quimiocina CXCL1/metabolismo , Quimiocina CXCL10/metabolismo , Epiderme/imunologia , Epiderme/metabolismo , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos da radiação , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Melanócitos/metabolismo , Melanócitos/efeitos da radiação , Melanoma/etiologia , Melanoma/patologia , Cultura Primária de Células , Transdução de Sinais/imunologia , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/patologia , Receptor 4 Toll-Like/metabolismo
13.
Chem Biol ; 20(3): 379-90, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23521796

RESUMO

Monoacylglycerol lipase (MAGL) terminates the signaling function of the endocannabinoid, 2-arachidonoylglycerol (2-AG). During 2-AG hydrolysis, MAGL liberates arachidonic acid, feeding the principal substrate for the neuroinflammatory prostaglandins. In cancer cells, MAGL redirects lipid stores toward protumorigenic signaling lipids. Thus MAGL inhibitors may have great therapeutic potential. Although potent and increasingly selective MAGL inhibitors have been described, their number is still limited. Here, we have characterized piperazine and piperidine triazole ureas that combine the high potency attributable to the triazole leaving group together with the bulky aromatic benzodioxolyl moiety required for selectivity, culminating in compound JJKK-048 that potently (IC50 < 0.4 nM) inhibited human and rodent MAGL. JJKK-048 displayed low cross-reactivity with other endocannabinoid targets. Activity-based protein profiling of mouse brain and human melanoma cell proteomes suggested high specificity also among the metabolic serine hydrolases.


Assuntos
Benzodioxóis/química , Monoacilglicerol Lipases/antagonistas & inibidores , Piperazinas/farmacologia , Piperidinas/química , Triazóis/química , Ureia/química , Ureia/farmacologia , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Camundongos , Piperazina , Ratos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA