Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pineal Res ; 74(1): e12834, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36203395

RESUMO

Exposure to the space environment induces a number of pathophysiological outcomes in astronauts, including bone demineralization, sleep disorders, circadian clock dysregulation, cardiovascular and metabolic dysfunction, and reduced immune system function. A recent report describing experiments aboard the Space Shuttle mission, STS-132, showed that the level of melatonin, a hormone that provides the biochemical signal of darkness, was decreased during microgravity in an in vitro culture model. Additionally, abnormal lighting conditions in outer space, such as low light intensity in orbital spacecraft and the altered 24-h light-dark cycles, may result in the dysregulation of melatonin rhythms and the misalignment of the circadian clock from sleep and work schedules in astronauts. Studies on Earth have demonstrated that melatonin regulates various physiological functions including bone metabolism. These data suggest that the abnormal regulation of melatonin in outer space may contribute to pathophysiological conditions of astronauts. In addition, experiments with high-linear energy transfer radiation, a ground-based model of space radiation, showed that melatonin may serve as a protectant against space radiation. Gene expression profiling using an in vitro culture model exposed to space flight during the STS-132 mission, showed that space radiation alters the expression of DNA repair and oxidative stress response genes, indicating that melatonin counteracts the expression of these genes responsive to space radiation to promote cell survival. These findings implicate the use of exogenous melatonin and the regulation of endogenous melatonin as countermeasures for the physiological consequences of space flight.


Assuntos
Transtornos Cronobiológicos , Relógios Circadianos , Melatonina , Lesões por Radiação , Voo Espacial , Humanos , Melatonina/farmacologia , Melatonina/fisiologia , Ritmo Circadiano/fisiologia
2.
Int J Mol Sci ; 23(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35682810

RESUMO

Cultured mammalian cells have been shown to respond to microgravity (µG), but the molecular mechanism is still unknown. The study we report here is focused on molecular and cellular events that occur within a short period of time, which may be related to gravity sensing by cells. Our assumption is that the gravity-sensing mechanism is activated as soon as cells are exposed to any new gravitational environment. To study the molecular events, we exposed cells to simulated µG (SµG) for 15 min, 30 min, 1 h, 2 h, 4 h, and 8 h using a three-dimensional clinostat and made cell lysates, which were then analyzed by reverse phase protein arrays (RPPAs) using a panel of 453 different antibodies. By comparing the RPPA data from cells cultured at 1G with those of cells under SµG, we identified a total of 35 proteomic changes in the SµG samples and found that 20 of these changes took place, mostly transiently, within 30 min. In the 4 h and 8 h samples, there were only two RPPA changes, suggesting that the physiology of these cells is practically indistinguishable from that of cells cultured at 1 G. Among the proteins involved in the early proteomic changes were those that regulate cell motility and cytoskeletal organization. To see whether changes in gravitational environment indeed activate cell motility, we flipped the culture dish upside down (directional change in gravity vector) and studied cell migration and actin cytoskeletal organization. We found that compared with cells grown right-side up, upside-down cells transiently lost stress fibers and rapidly developed lamellipodia, which was supported by increased activity of Ras-related C3 botulinum toxin substrate 1 (Rac1). The upside-down cells also increased their migratory activity. It is possible that these early molecular and cellular events play roles in gravity sensing by mammalian cells. Our study also indicated that these early responses are transient, suggesting that cells appear to adapt physiologically to a new gravitational environment.


Assuntos
Actinas , Ausência de Peso , Actinas/metabolismo , Animais , Movimento Celular , Células Cultivadas , Mamíferos/metabolismo , Proteômica
3.
J Biol Chem ; 295(37): 12946-12961, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32675286

RESUMO

The anticancer agent 5-fluorouracil (5-FU) is cytotoxic and often used to treat various cancers. 5-FU is thought to inhibit the enzyme thymidylate synthase, which plays a role in nucleotide synthesis and has been found to induce single- and double-strand DNA breaks. ATR Ser/Thr kinase (ATR) is a principal kinase in the DNA damage response and is activated in response to UV- and chemotherapeutic drug-induced DNA replication stress, but its role in cellular responses to 5-FU is unclear. In this study, we examined the effect of ATR inhibition on 5-FU sensitivity of mammalian cells. Using immunoblotting, we found that 5-FU treatment dose-dependently induced the phosphorylation of ATR at the autophosphorylation site Thr-1989 and thereby activated its kinase. Administration of 5-FU with a specific ATR inhibitor remarkably decreased cell survival, compared with 5-FU treatment combined with other major DNA repair kinase inhibitors. Of note, the ATR inhibition enhanced induction of DNA double-strand breaks and apoptosis in 5-FU-treated cells. Using gene expression analysis, we found that 5-FU induced the activation of the intra-S cell-cycle checkpoint. Cells lacking BRCA2 were sensitive to 5-FU in the presence of ATR inhibitor. Moreover, ATR inhibition enhanced the efficacy of the 5-FU treatment, independently of the nonhomologous end-joining and homologous recombination repair pathways. These findings suggest that ATR could be a potential therapeutic target in 5-FU-based chemotherapy.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Reparo de DNA por Recombinação/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linhagem Celular Tumoral , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Raios Ultravioleta
4.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638848

RESUMO

The space environment consists of a complex mixture of different types of ionizing radiation and altered gravity that represents a threat to humans during space missions. In particular, individual radiation sensitivity is strictly related to the risk of space radiation carcinogenesis. Therefore, in view of future missions to the Moon and Mars, there is an urgent need to estimate as accurately as possible the individual risk from space exposure to improve the safety of space exploration. In this review, we survey the combined effects from the two main physical components of the space environment, ionizing radiation and microgravity, to alter the genetics and epigenetics of human cells, considering both real and simulated space conditions. Data collected from studies on human cells are discussed for their potential use to estimate individual radiation carcinogenesis risk from space exposure.


Assuntos
Dano ao DNA , Genômica/métodos , Gravidade Alterada , Lesões por Radiação/genética , Simulação de Ausência de Peso/métodos , Ausência de Peso , Adaptação Fisiológica , Humanos , Proteção Radiológica/métodos , Voo Espacial/métodos
5.
Int J Mol Sci ; 21(8)2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325684

RESUMO

The establishment of cancer cell lines, which have different metastatic abilities compared with the parental cell, is considered as an effective approach to investigate mechanisms of metastasis. A highly metastatic potential mouse colon cancer cell subline, Colon-26MGS, was derived from the parental cell line Colon-26 by in vivo selection using continuous subcutaneous implanting to immunocompetent mice. To clarify the mechanisms involved in the enhancement of metastasis, morphological characteristics, cell proliferation, and gene expression profiles were compared between Colon-26MGS and the parental cell. Colon-26MGS showed over 10 times higher metastatic ability compared with the parental cell, but there were no differences in morphological characteristics and in vitro proliferation rates. In addition, the Colon-26MGS-bearing mice exhibited no marked change of splenocyte population and lung pre-metastatic niche with tumor-free mice, but there were significant differences compared to Colon-26-bearing mice. RNA-seq analyses indicated that immune costimulatory molecules were significantly up-regulated in Colon-26MGS. These results suggest that Colon-26MGS showed not only higher metastatic activity, but also less induction property of host immune response compared to parental Colon-26. Colon-26MGS has proven to be a novel useful tool for studying multiple mechanisms involving metastasis enhancement.


Assuntos
Carcinoma/metabolismo , Carcinoma/secundário , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias do Colo/metabolismo , Neoplasias Pulmonares/metabolismo , Animais , Carcinoma/genética , Carcinoma/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , RNA-Seq
6.
J Pineal Res ; 67(3): e12594, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31286565

RESUMO

Astronauts experience osteoporosis-like loss of bone mass because of microgravity conditions during space flight. To prevent bone loss, they need a riskless and antiresorptive drug. Melatonin is reported to suppress osteoclast function. However, no studies have examined the effects of melatonin on bone metabolism under microgravity conditions. We used goldfish scales as a bone model of coexisting osteoclasts and osteoblasts and demonstrated that mRNA expression level of acetylserotonin O-methyltransferase, an enzyme essential for melatonin synthesis, decreased significantly under microgravity. During space flight, microgravity stimulated osteoclastic activity and significantly increased gene expression for osteoclast differentiation and activation. Melatonin treatment significantly stimulated Calcitonin (an osteoclast-inhibiting hormone) mRNA expression and decreased the mRNA expression of receptor activator of nuclear factor κB ligand (a promoter of osteoclastogenesis), which coincided with suppressed gene expression levels for osteoclast functions. This is the first study to report the inhibitory effect of melatonin on osteoclastic activation by microgravity. We also observed a novel action pathway of melatonin on osteoclasts via an increase in CALCITONIN secretion. Melatonin could be the source of a potential novel drug to prevent bone loss during space flight.


Assuntos
Reabsorção Óssea/prevenção & controle , Melatonina/uso terapêutico , Voo Espacial , Animais , Densidade Óssea/efeitos dos fármacos , Calcitonina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Carpa Dourada , Imuno-Histoquímica , NF-kappa B/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Ausência de Peso/efeitos adversos
7.
Int J Mol Sci ; 20(19)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561588

RESUMO

Multiple unique environmental factors such as space radiation and microgravity (µG) pose a serious threat to human gene stability during space travel. Recently, we reported that simultaneous exposure of human fibroblasts to simulated µG and radiation results in more chromosomal aberrations than in cells exposed to radiation alone. However, the mechanisms behind this remain unknown. The purpose of this study was thus to obtain comprehensive data on gene expression using a three-dimensional clinostat synchronized to a carbon (C)-ion or X-ray irradiation system. Human fibroblasts (1BR-hTERT) were maintained under standing or rotating conditions for 3 or 24 h after synchronized C-ion or X-ray irradiation at 1 Gy as part of a total culture time of 2 days. Among 57,773 genes analyzed with RNA sequencing, we focused particularly on the expression of 82 cell cycle-related genes after exposure to the radiation and simulated µG. The expression of cell cycle-suppressing genes (ABL1 and CDKN1A) decreased and that of cell cycle-promoting genes (CCNB1, CCND1, KPNA2, MCM4, MKI67, and STMN1) increased after C-ion irradiation under µG. The cell may pass through the G1/S and G2 checkpoints with DNA damage due to the combined effects of C-ions and µG, suggesting that increased genomic instability might occur in space.


Assuntos
Proteínas de Ciclo Celular/genética , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Radiação não Ionizante , Transcriptoma , Ausência de Peso , Perfilação da Expressão Gênica , Humanos
8.
Int J Hyperthermia ; 34(6): 795-801, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28891354

RESUMO

PURPOSE: Heat shock induces DNA double-strand breaks (DSBs) in mammalian cells. Mammalian cells are capable of repairing DSBs by utilising the homologous recombination (HR) pathway. Breast cancer susceptibility gene 2 (BRCA2) is known to regulate the HR pathway. Here, we investigate the role of BRCA2 in repairing DNA damage induced by heat shock. MATERIALS AND METHODS: Chinese hamster lung fibroblast cell lines and human tongue squamous cell carcinoma SAS cells were used. RAD51 foci formation assay was used as an HR indicator. Heat sensitivity was analysed with colony forming assays. Phosphorylated histone H2AX (γH2AX) intensity, which correlates with the number of DSBs, was analysed with flow cytometry. RESULTS: RAD51 foci appeared with heat shock, and the number of cells with RAD51 foci was maximal at about 4 h after heat shock. Heat-induced RAD51 foci co-localised with γH2AX foci. BRCA2-deficient cells were sensitive to heat when compared to their parental wild-type cells. Heat-induced γH2AX was higher in BRCA2-deficient cells compared to parental cells. In SAS cells, cells transfected with BRCA2-siRNA were more sensitive to heat than cells transfected with negative control siRNA. Apoptotic bodies increased in number more rapidly in BRCA2-siRNA transfected cells than in cells transfected with negative control siRNA when cells were observed at 48 h after a heat treatment. In addition, cells deficient in BRCA2 were incapable of activating heat-induced G2/M arrest. CONCLUSION: BRCA2 has a protecting role against heat-induced cell death. BRCA2 might be a potential molecular target for hyperthermic cancer therapy.


Assuntos
Proteína BRCA2/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Resposta ao Choque Térmico/efeitos dos fármacos , Hipertermia Induzida/efeitos adversos , Animais , Cricetinae , Humanos , Hipertermia Induzida/métodos
9.
Int J Mol Sci ; 19(12)2018 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-30544854

RESUMO

Although the body's immune system is altered during spaceflight, the effects of microgravity (µG) on tumor growth and carcinogenesis are, as yet, unknown. To assess tumor proliferation and its effects on the immune system, we used a hind-limb unloading (HU) murine model to simulate µG during spaceflight. HU mice demonstrated significantly increased tumor growth, metastasis to the lung, and greater splenic and thymic atrophy compared with mice in constant orthostatic suspension and standard housing controls. In addition, mice undergoing temporary loading during HU (2 h per day) demonstrated no difference in cancer progression and immune organ atrophy compared with controls. Our findings suggest that temporary loading can prevent cancer progression and immune organ atrophy induced by HU. Further space experiment studies are warranted to elucidate the precise effects of µG on systemic immunity and cancer progression.


Assuntos
Progressão da Doença , Elevação dos Membros Posteriores , Neoplasias/patologia , Especificidade de Órgãos , Animais , Atrofia , Peso Corporal , Linhagem Celular Tumoral , Neoplasias Pulmonares/secundário , Tecido Linfoide/patologia , Camundongos
10.
Int J Mol Sci ; 20(1)2018 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-30583489

RESUMO

Space radiation and microgravity (µG) are two major environmental stressors for humans in space travel. One of the fundamental questions in space biology research is whether the combined effects of µG and exposure to cosmic radiation are interactive. While studies addressing this question have been carried out for half a century in space or using simulated µG on the ground, the reported results are ambiguous. For the assessment and management of human health risks in future Moon and Mars missions, it is necessary to obtain more basic data on the molecular and cellular responses to the combined effects of radiation and µG. Recently we incorporated a µG⁻irradiation system consisting of a 3D clinostat synchronized to a carbon-ion or X-ray irradiation system. Our new experimental setup allows us to avoid stopping clinostat rotation during irradiation, which was required in all other previous experiments. Using this system, human fibroblasts were exposed to X-rays or carbon ions under the simulated µG condition, and chromosomes were collected with the premature chromosome condensation method in the first mitosis. Chromosome aberrations (CA) were quantified by the 3-color fluorescent in situ hybridization (FISH) method. Cells exposed to irradiation under the simulated µG condition showed a higher frequency of both simple and complex types of CA compared to cells irradiated under the static condition by either X-rays or carbon ions.


Assuntos
Radioisótopos de Carbono/efeitos adversos , Aberrações Cromossômicas/efeitos da radiação , Fibroblastos/efeitos da radiação , Simulação de Ausência de Peso/efeitos adversos , Raios X/efeitos adversos , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Cromossomos Humanos Par 1/efeitos da radiação , Cromossomos Humanos Par 2/efeitos da radiação , Cromossomos Humanos Par 4/efeitos da radiação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Humanos , Hibridização in Situ Fluorescente
11.
Int J Hyperthermia ; 33(3): 336-342, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27776457

RESUMO

PURPOSE: Heat shock induces DNA double-strand breaks (DSBs), but the precise mechanism of repairing heat-induced damage is unclear. Here, we investigated the DNA repair pathways involved in cell death induced by heat shock. MATERIALS AND METHODS: B02, a specific inhibitor of human RAD51 (homologous recombination; HR), and NU7026, a specific inhibitor of DNA-PK (non-homologous end-joining; NHEJ), were used for survival assays of human cancer cell lines with different p53-gene status. Mouse embryonic fibroblasts (MEFs) lacking Lig4 (NHEJ) and/or Rad54 (HR) were used for survival assays and a phosphorylated histone H2AX at Ser139 (γH2AX) assay. MEFs lacking Rad51d (HR) were used for survival assays. SPD8 cells were used to measure HR frequency after heat shock. RESULTS: Human cancer cells were more sensitive to heat shock in the presence of B02 despite their p53-gene status, and the effect of B02 on heat sensitivity was specific to the G2 phase. Rad54-deficient MEFs were sensitive to heat shock and showed prolonged γH2AX signals following heat shock. Rad51d-deficient MEFs were also sensitive to heat shock. Moreover, heat shock-stimulated cells had increased HR. CONCLUSIONS: The HR pathway plays an important role in the survival of mammalian cells against death induced by heat shock via the repair of heat-induced DNA DSBs.

12.
Nucleic Acids Res ; 41(8): 4671-85, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23471000

RESUMO

Stress response mechanisms that modulate the dynamics of tRNA degradation and accumulation from the cytoplasm to the nucleus have been studied in yeast, the rat hepatoma and human cells. In the current study, we investigated tRNA degradation and accumulation in HeLa cells under various forms of stress. We found that initiator tRNA(Met) (tRNA(iMet)) was specifically degraded under heat stress. Two exonucleases, Xrn1 and Xrn2, are involved in the degradation of tRNA(iMet) in the cytoplasm and the nucleus, respectively. In addition to degradation, we observed accumulation of tRNA(iMet) in the nucleus. We also found that the mammalian target of rapamycin (mTOR), which regulates tRNA trafficking in yeast, is partially phosphorylated at Ser2448 in the presence of rapamycin and/or during heat stress. Our results suggest phosphorylation of mTOR may correlate with accumulation of tRNA(iMet) in heat-treated HeLa cells.


Assuntos
Núcleo Celular/metabolismo , Exorribonucleases/metabolismo , Temperatura Alta , Proteínas Associadas aos Microtúbulos/metabolismo , RNA de Transferência de Metionina/metabolismo , Sequência de Bases , Células HeLa , Humanos , Dados de Sequência Molecular , RNA de Transferência de Metionina/química , Serina-Treonina Quinases TOR/metabolismo
13.
Life Sci Space Res (Amst) ; 41: 202-209, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670648

RESUMO

Explorations of the Moon and Mars are planned as future manned space missions, during which humans will be exposed to both radiation and microgravity. We do not, however, know the health effects for such combined exposures. In a ground-based experiment, we evaluated the combined effects of radiation and simulated microgravity on tumorigenesis by performing X-irradiation and tail suspension in C3B6F1 ApcMin/+ mice, a well-established model for intestinal tumorigenesis. Mice were irradiated at 2 weeks of age and underwent tail suspension for 3 or 11 weeks using a special device that avoids damage to the tail. The tail suspension treatment significantly reduced the thymus weight after 3 weeks but not 11 weeks, suggesting a transient stress response. The combination of irradiation and tail suspension significantly increased the number of small intestinal tumors less than 2 mm in diameter as compared with either treatment alone. The combined treatment also increased the fraction of malignant tumors among all small intestinal tumors as compared with the radiation-only treatment. Thus, the C3B6F1 ApcMin/+ mouse is a useful model for assessing cancer risk in a simulated space environment, in which simulated microgravity accelerates tumor progression when combined with radiation exposure.


Assuntos
Neoplasias Intestinais , Simulação de Ausência de Peso , Animais , Camundongos , Neoplasias Intestinais/patologia , Neoplasias Intestinais/etiologia , Carcinogênese/efeitos da radiação , Camundongos Endogâmicos C57BL , Elevação dos Membros Posteriores , Masculino , Raios X , Modelos Animais de Doenças , Feminino , Intestino Delgado/efeitos da radiação , Intestino Delgado/patologia , Timo/efeitos da radiação , Timo/patologia , Neoplasias Induzidas por Radiação/patologia , Neoplasias Induzidas por Radiação/etiologia
14.
Biomolecules ; 14(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38254688

RESUMO

During future space missions, astronauts will be exposed to cosmic radiation and microgravity (µG), which are known to be health risk factors. To examine the differentially expressed genes (DEG) and their prevalent biological processes and pathways as a response to these two risk factors simultaneously, 1BR-hTERT human fibroblast cells were cultured under 1 gravity (1G) or simulated µG for 48 h in total and collected at 0 (sham irradiated), 3 or 24 h after 1 Gy of X-ray or Carbon-ion (C-ion) irradiation. A three-dimensional clinostat was used for the simulation of µG and the simultaneous radiation exposure of the samples. The RNA-seq method was used to produce lists of differentially expressed genes between different environmental conditions. Over-representation analyses were performed and the enriched biological pathways and targeting transcription factors were identified. Comparing sham-irradiated cells under simulated µG and 1G conditions, terms related to response to oxygen levels and muscle contraction were identified. After irradiation with X-rays or C-ions under 1G, identified DEGs were found to be involved in DNA damage repair, signal transduction by p53 class mediator, cell cycle arrest and apoptosis pathways. The same enriched pathways emerged when cells were irradiated under simulated µG condition. Nevertheless, the combined effect attenuated the transcriptional response to irradiation which may pose a subtle risk in space flights.


Assuntos
Ausência de Peso , Humanos , Ausência de Peso/efeitos adversos , Radiação Ionizante , Fibroblastos , Simulação por Computador , Expressão Gênica
15.
J Radiat Res ; 64(4): 693-701, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37427542

RESUMO

Irradiation of the liver induces a regenerative response in the nonirradiated part of the liver. It is unclear whether this leads to actual liver enlargement. The aim of this study was to evaluate the weight of compensatory hypertrophy that occurs in nonirradiated livers and to clarify the mechanism of hypertrophy from the viewpoint of hepatocyte proliferation. The anterior liver lobes (anterior lobes) were irradiated with 60 Gy of X-rays (X60 Gy) under opening laparotomy. Body weights and liver lobe weights were measured before and at 1, 4, 8 and 12 weeks after irradiation, and serum and liver tissue samples were analyzed at each time point. The anterior lobes atrophied progressively, whereas the posterior liver lobes (posterior lobes) hypertrophied in the X-ray irradiated (X-irradiated) group. Although temporary liver damage was observed after irradiation, liver function did not decrease at any time point. Hepatocyte degeneration and loss were observed in the anterior lobes of the X-irradiated group, and significant fibrosis developed 8 weeks postirradiation. Following irradiation, the proportion of Ki-67-positive cells in the anterior lobes decreased markedly in the early postirradiation period, whereas the proportion of positive cells in the posterior lobes increased, peaking at 4 weeks postirradiation (P < 0.05). Increased tumor necrosis factor-α expression was observed only in the anterior liver lobes of the X-irradiated group at 1 and 4 weeks postirradiation. Partial liver irradiation with X60 Gy induced compensatory hypertrophy of nonirradiated liver lobes. This study suggests that liver hypertrophy after partial liver irradiation is caused by increased hepatocyte mitosis.


Assuntos
Hepatopatias , Fígado , Ratos , Animais , Fígado/efeitos da radiação , Hepatócitos/efeitos da radiação , Hepatopatias/etiologia , Proliferação de Células/efeitos da radiação , Hipertrofia/complicações , Hipertrofia/metabolismo , Hipertrofia/patologia
16.
Biochem Biophys Res Commun ; 423(4): 654-60, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22695120

RESUMO

Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status in cancer cells. Recently, it has been suggested that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signaling were analyzed with Western Blotting 1, 2, 3 and 6h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis. Akt-related protein levels decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G(2)/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and suppresses cell growth by suppressing Akt-related signaling, even in mp53 bearing cancer cells.


Assuntos
Apoptose/genética , Carcinoma de Células Escamosas/patologia , Transferência Linear de Energia , Neoplasias Bucais/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tolerância a Radiação/genética , Proteína Supressora de Tumor p53/genética , Apoptose/efeitos da radiação , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/genética , Caspase 3/biossíntese , Caspase 9/biossíntese , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Ativação Enzimática , Humanos , Neoplasias Bucais/enzimologia , Neoplasias Bucais/genética , Mutação , Proteínas Proto-Oncogênicas c-akt/genética , Raios X
17.
Front Cell Dev Biol ; 10: 965656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120559

RESUMO

The return to the Moon and the landing on Mars has emphasized the need for greater attention to the effects of partial gravity on human health. Here, we sought to devise a new type of simulated partial gravity apparatus that could more efficiently and accurately provide a partial gravity environment for rat hindlimbs. The new apparatus uses a pulley system and tail suspension to create the simulated partial gravity of the rat's hind limbs by varying the weight in a balance container attached to the pulley system. An experiment was designed to verify the reliability and stability of the new apparatus. In this experiment, 25 seven-week-old male Wistar Hannover rats were randomly divided into five groups (n = 5 per group): hindlimb full weight-bearing control (1G), sham (1G), and the simulated gravity groups including Mars (3/8G), Moon (1/6G), and interplanetary space (microgravity: µG). The levels of partial gravity experienced by rat hindlimbs in the Mars and Moon groups were provided by a novel simulated partial gravity device. Changes in bone parameters [overall bone mineral density (BMD), trabecular BMD, cortical BMD, cortical bone thickness, minimum moment of area (MMA), and polar moment of area (PMA)] were evaluated using computed tomography in all rats at the proximal, middle, and distal regions of femur and tibia. Reduced gravity led to decreases in bone parameters (overall BMD, trabecular BMD, cortical BMD, MMA, and PMA) in the simulated gravity groups, mainly in distal femur and proximal tibia. The proximal tibia, MMA, and PMA findings indicated greater weakness in the µG group than in the Mars group. The sham group design also excluded the decrease in lower limb bone parameters caused by the suspension attachment of the rat's tail. The new simulated partial gravity apparatus can provide a continuous and stable level of partial gravity. It offers a reliable and valuable model for studying the effects of extraterrestrial gravity environments on humans.

18.
Int J Radiat Oncol Biol Phys ; 112(3): 780-789, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740767

RESUMO

PURPOSE: The goal of this study is to clarify the underlying mechanisms of metastasis suppression by carbon-ion radiotherapy combined with immature dendritic cell immunotherapy (CiDC), which was shown previously to suppress pulmonary metastasis in an NR-S1-bearing C3H/He mouse model. METHODS AND MATERIALS: Mouse carcinoma cell lines (LLC, LM8, Colon-26, and Colon-26MGS) were grafted into the right hind paw of syngeneic mice (C57BL/6J, C3H/He, and BALB/c). Seven days later, the tumors on the mice were locally irradiated with carbon ions (290 MeV/n, 6 cm spread-out Bragg peak, 1 or 2 Gy). At 1.5 days after irradiation, bone marrow-derived immature dendritic cells (iDCs) were administrated intravenously into a subset of the mice. The number of lung metastases was evaluated within 3 weeks after irradiation. In vitro-cultured cancer cells were irradiated with carbon ions (290 MeV/n, mono-energy, LET approximately 70-80 keV/µm), and then cocultured with iDCs for 3 days to determine the DC maturation. RESULTS: CiDC effectively repressed distant lung metastases in cancer cell (LLC and LM8)-bearing C57BL/6J and C3H/He mouse models. However, Colon-26- and Colon-26MGS-bearing BALB/c models did not show enhancement of metastasis suppression by combination treatment. This result was evaluated further by comparing LM8-bearing C3H/He and LLC-bearing C57BL/6J models with a Colon-26-bearing BALB/c model. In vitro coculture assays demonstrated that all irradiated cell lines were able to activate C3H/He- or C57BL/6J-derived iDCs into mature DCs, but not BALB/c-derived iDCs. CONCLUSIONS: The genetic background of the host could have a strong effect on the potency of combination therapy. Future animal and clinical testing should evaluate host genetic factors when evaluating treatment efficacy.


Assuntos
Imunoterapia , Neoplasias Pulmonares , Animais , Carbono , Células Dendríticas , Patrimônio Genético , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL
19.
Sci Rep ; 12(1): 16405, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180516

RESUMO

Hibernation or torpor is considered a possible tool to protect astronauts from the deleterious effects of space radiation that contains high-energy heavy ions. We induced synthetic torpor in rats by injecting adenosine 5'-monophosphate monohydrate (5'-AMP) i.p. and maintaining in low ambient temperature room (+ 16 °C) for 6 h immediately after total body irradiation (TBI) with accelerated carbon ions (C-ions). The 5'-AMP treatment in combination with low ambient temperature reduced skin temperature and increased survival following 8 Gy C-ion irradiation compared to saline-injected animals. Analysis of the histology of the brain, liver and lungs showed that 5'-AMP treatment following 2 Gy TBI reduced activated microglia, Iba1 positive cells in the brain, apoptotic cells in the liver, and damage to the lungs, suggesting that synthetic torpor spares tissues from energetic ion radiation. The application of 5'-AMP in combination with either hypoxia or low temperature environment for six hours following irradiation of rat retinal pigment epithelial cells delays DNA repair and suppresses the radiation-induced mitotic catastrophe compared to control cells. We conclude that synthetic torpor protects animals from cosmic ray-simulated radiation and the mechanism involves both hypothermia and hypoxia.


Assuntos
Íons Pesados , Hibernação , Torpor , Adenosina/farmacologia , Monofosfato de Adenosina/farmacologia , Animais , Temperatura Corporal , Carbono/farmacologia , Hipóxia , Ratos , Pigmentos da Retina
20.
Biochem Biophys Res Commun ; 404(1): 206-10, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21111709

RESUMO

The role of the Fanconi anemia (FA) repair pathway for DNA damage induced by formaldehyde was examined in the work described here. The following cell types were used: mouse embryonic fibroblast cell lines FANCA(-/-), FANCC(-/-), FANCA(-/-)C(-/-), FANCD2(-/-) and their parental cells, the Chinese hamster cell lines FANCD1 mutant (mt), FANCGmt, their revertant cells, and the corresponding wild-type (wt) cells. Cell survival rates were determined with colony formation assays after formaldehyde treatment. DNA double strand breaks (DSBs) were detected with an immunocytochemical γH2AX-staining assay. Although the sensitivity of FANCA(-/-), FANCC(-/-) and FANCA(-/-)C(-/-) cells to formaldehyde was comparable to that of proficient cells, FANCD1mt, FANCGmt and FANCD2(-/-) cells were more sensitive to formaldehyde than the corresponding proficient cells. It was found that homologous recombination (HR) repair was induced by formaldehyde. In addition, γH2AX foci in FANCD1mt cells persisted for longer times than in FANCD1wt cells. These findings suggest that formaldehyde-induced DSBs are repaired by HR through the FA repair pathway which is independent of the FA nuclear core complex.


Assuntos
Dano ao DNA , Reparo do DNA/genética , DNA Recombinante , Proteínas de Grupos de Complementação da Anemia de Fanconi/fisiologia , Animais , Proteína BRCA2/fisiologia , Células CHO , Cricetinae , Cricetulus , Proteína do Grupo de Complementação A da Anemia de Fanconi/fisiologia , Proteína do Grupo de Complementação C da Anemia de Fanconi/fisiologia , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/fisiologia , Formaldeído/toxicidade , Histonas/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA