Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Opt Lett ; 47(13): 3371-3374, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776627

RESUMO

Based on dual-chirped optical parametric amplification (DC-OPA) and type-I BiB3O6 (BiBO) crystals, the generation of >100 mJ, 10.4 fs, 10 Hz, carrier-envelope phase (CEP)-stable laser pulses, which are centered at 1.7 µm, was demonstrated producing a peak power of 10 TW. CEP-dependent high harmonic generation (HHG) was implemented to confirm the sub-two-cycle pulse duration and CEP stabilization of infrared (IR) laser pulses. As far as we know, the obtained pulse energy and peak power represented the highest values for sub-two-cycle CEP-stable IR optical parametric amplification. Additionally, the prospects of achieving high-energy water window isolated attosecond pulses (IAPs) via our developed laser source were discussed.

2.
Opt Express ; 28(10): 15138-15147, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403546

RESUMO

This paper presents the optimization of a dual-chirped optical parametric amplification (DC-OPA) scheme for producing an ultrafast intense infrared (IR) pulse. By employing a total energy of 0.77 J Ti:sapphire pump laser and type-I BBO crystals, an IR pulse energy at the center wavelength of 1.7 µm exceeded 0.1 J using the optimized DC-OPA. By adjusting the injected seed spectrum and prism pair compressor with a gross throughput of over 70%, the 1.7-µm pulse was compressed to 31 fs, which resulted in a peak power of up to 2.3 TW. Based on the demonstration of the BBO type-I DC-OPA, we propose a novel OPA scheme called the "dual pump DC-OPA" for producing a high-energy IR pulse with a two-cycle duration.

3.
Opt Express ; 24(12): 13276-87, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27410345

RESUMO

We demonstrate a method of stabilizing the carrier-envelope phase (CEP) of low-repetition-rate, high-energy femtosecond laser systems such as TW-PW class lasers. A relatively weak high-repetition-rate (~1 kHz) reference pulse copropagates with a low-repetition-rate (10 Hz) high-energy pulse, which are s- and p-polarized, respectively. Using a Brewster angle window, the reference pulse is separated after the power amplifier and used for feedback to stabilize its CEP. The single-shot CEP of the high-energy pulse is indirectly stabilized to 550 mrad RMS, which is the highest CEP stability ever reported for a low-repetition-rate (10-Hz) high-energy laser system. In this novel method, the feedback frequency of the reference pulse from the front-end preamplifier can be almost preserved. Thus, higher CEP stability can be realized than for lower frequencies. Of course, a reference pulse with an even higher repetition rate (e.g., 10 kHz) can be easily employed to sample and feed back CEP jitter over a broader frequency bandwidth.

4.
Opt Express ; 24(13): 14546-51, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27410607

RESUMO

An experimental demonstration of a wide-range narrowband multilayer mirror for selecting a single-order high-harmonic (HH) beam from multiple-order harmonics in the photon energy range between 40 eV and 70 eV was carried out. This extreme ultraviolet (XUV) mirror, based on a pair of Zr and Al0.7Si0.3 multilayers, has a reflectivity of 20-35% and contrast of more than 7 with respect to neighboring HHs at angles of incidence from 10 to 56.9 degrees, assuming HHs pumped at 1.55 eV. Thus, specific single-order harmonic beams can be arbitrarily selected from multiple-order harmonics in this photo energy range. In addition, the dispersion for input pulses of the order of 1 fs is negligible. This simple-to-align optical component is useful for the many various applications in physics, chemistry and biology that use ultrafast monochromatic HH beams.

5.
Opt Lett ; 40(21): 4835-8, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26512462

RESUMO

We propose and demonstrate a simple and promising method for stabilizing the carrier-envelope phase (CEP) of a high-energy ultrashort pulse laser operating at a low repetition rate. The method was successfully applied to a Ti:sapphire laser operating at 10 Hz with 400 mJ pulse energy and 25 fs pulse duration (16 TW). The laser system consists of a 1 kHz front-end preamplifier and a 10 Hz back-end power amplifier. By sampling a 500 Hz reference pulse from a 1 kHz seed pulse, the measured single-shot CEP noise of a 10 Hz amplified pulse is stabilized to 670 mrad rms. Our proposed CEP stabilization concept can be applied to single-shot ultrahigh-power lasers, such as a petawatt laser system.

6.
Opt Lett ; 40(21): 5082-5, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26512524

RESUMO

We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 µm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.


Assuntos
Amplificadores Eletrônicos , Transferência de Energia , Raios Infravermelhos , Lasers , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Retroalimentação
7.
Opt Express ; 20(6): 6669-76, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22418550

RESUMO

We proposed and experimentally demonstrated a rotation-free approach of holographic imaging by using an extended arc reference. From the diffraction intensity, the objects were retrieved using a two-step algorithm without a prior knowledge of the information of the sample and reference. This scheme alleviates the convergence problem of coherent diffractive imaging and also promises to achieve a high resolution.


Assuntos
Algoritmos , Holografia/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes , Rotação , Sensibilidade e Especificidade
8.
Opt Lett ; 37(14): 2922-4, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22825179

RESUMO

We demonstrate the generation and real-time observation of the vibrational wave packet of D(2)(+) by using a sub-10-fs extreme UV high-harmonic pump pulse and a three-color probe laser pulse whose wavelength ranges from near-IR to vacuum UV. This multicolor pump-probe scheme can provide us with a powerful experimental tool for investigating a variety of wave packets evolving with a time scale of ~20 fs.

9.
Opt Express ; 19(8): 7190-212, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21503032

RESUMO

An ultrafast high-power infrared pulse source employing a dual-chirped optical parametric amplification (DC-OPA) scheme based on a Ti:sapphire pump laser system is theoretically investigated. By chirping both pump and seed pulses in an optimized way, high-energy pump pulses can be utilized for a DC-OPA process without exceeding the damage threshold of BBO crystals, and broadband signal and idler pulses at 1.4 µm and 1.87 µm can be generated with a total conversion efficiency approaching 40%. Furthermore, few-cycle idler pulses with a passively stabilized carrier-envelope phase (CEP) can be generated by the difference frequency generation process in a collinear configuration. DC-OPA, a BBO-OPA scheme pumped by a Ti:sapphire laser, is efficient and scalable in output energy of the infrared pulses, which provides us with the design parameters of an ultrafast infrared laser system with an energy up to a few hundred mJ.

10.
Opt Express ; 19(1): 317-24, 2011 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-21263571

RESUMO

The 13th harmonic of a Ti:sapphire (Ti:S) laser in the plateau region was injected as a seeding source to a 250-MeV free-electron-laser (FEL) amplifier. When the amplification conditions were fulfilled, strong enhancement of the radiation intensity by a factor of 650 was observed. The random and uncontrollable spikes, which appeared in the spectra of the Self-Amplified Spontaneous Emission (SASE) based FEL radiation without the seeding source, were found to be suppressed drastically to form to a narrow-band, single peak profile at 61.2 nm. The properties of the seeded FEL radiation were well reproduced by numerical simulations. We discuss the future precept of the seeded FEL scheme to the shorter wavelength region.

11.
Phys Chem Chem Phys ; 13(19): 8697-704, 2011 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-21442121

RESUMO

The visualization of ultrafast isomerization of deuterated acetylene dication (C(2)D(2)(2+)) is demonstrated by time-resolved Coulomb explosion imaging with sub-10 fs intense laser pulses (9 fs, 0.13 PW cm(-2), 800 nm). The Coulomb explosion imaging monitoring the three-body explosion process, C(2)D(2)(3+)→ D(+) + C(+) + CD(+), as a function of the delay between the pump and probe pulses revealed that the migration of a deuterium atom proceeds in a recurrent manner; One of the deuterium atoms first shifts from one carbon site to the other in a short timescale (∼90 fs), and then migrates back to the original carbon site by 280 fs, in competition with the molecular dissociation. Correlated motion of the two deuterium atoms associated with the hydrogen migration and structural deformation to non-planar geometry are identified by the time-resolved four-body Coulomb explosion imaging, C(2)D(2)(4+)→ D(+) + C(+) + C(+) + D(+).


Assuntos
Acetileno/química , Hidrogênio/química , Cátions/química , Deutério/química , Lasers , Análise Espectral , Fatores de Tempo
12.
Rev Sci Instrum ; 92(6): 063001, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243496

RESUMO

In our recent study [Fu et al., Commun. Phys. 3(1), 92 (2020)], we have developed an approach for energy-scaling of high-order harmonic generation in the water-window region under a neutral-medium condition. More specifically, we obtained a nanojoule-class water-window soft x-ray harmonic beam under a phase-matching condition. It has been achieved by combining a newly developed terawatt-class mid-infrared femtosecond laser and a loose-focusing geometry for high-order harmonic generation. The generated beam is more than 100 times intense compared to previously reported results. The experimental setup included two key parts: a terawatt mid-infrared femtosecond driving laser [Fu et al., Sci. Rep. 8(1), 7692 (2018)] and a specially designed gas cell. Despite the dramatic drop in the optimal gas pressure for phase-matching due to loose-focusing geometry, it still reached the 1 bar level for helium. Thus, we have designed a double-structured pulsed-gas cell with a differential pumping system, which enabled providing sufficiently high gas pressure. Moreover, it allowed reducing gas consumption significantly. A robust energy-scalable apparatus for high-order harmonic generation developed in this study will enable the generation of over ten-nanojoule water-window attosecond pulses in the near future.

13.
Opt Express ; 18(24): 24619-31, 2010 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21164808

RESUMO

We report periodical frequency modulation of high-order harmonic fields observed by changing the delay between the driving two-color laser fields consisting of the fundamental and its second harmonic (SH) field. The amplitude of modulation has been up to ∼0.4 eV, which is larger than the bandwidth of the fundamental field. Experimental results show that the intensity and chirp of the fundamental field can control this phenomenon. Numerical analysis by solving the time-dependent Schrödinger equation approves of these results and shows that anharmonic frequency components of the SH field have a crucial role in this phenomenon.

14.
Phys Rev Lett ; 104(23): 233901, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20867240

RESUMO

We propose and demonstrate the generation of a continuum high-order harmonic spectrum by mixing multicycle two-color (TC) laser fields with the aim of obtaining an intense isolated attosecond pulse. By optimizing the wavelength of a supplementary infrared pulse in a TC field, a continuum harmonic spectrum was created around the cutoff region without carrier-envelope phase stabilization. The obtained harmonic spectra clearly show the possibility of generating isolated attosecond pulses from a multicycle TC laser field, which is generated by an 800 nm, 30 fs pulse mixed with a 1300 nm, 40 fs pulse. Our proposed method enables us not only to relax the requirements for the pump pulse duration but also to reduce ionization of the harmonic medium. This concept opens the door to create an intense isolated attosecond pulse using a conventional femtosecond laser system.

15.
Sci Adv ; 6(16): eaay2802, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32494595

RESUMO

A stable 50-mJ three-channel optical waveform synthesizer is demonstrated and used to reproducibly generate a high-order harmonic supercontinuum in the soft x-ray region. This synthesizer is composed of pump pulses from a 10-Hz repetition-rate Ti:sapphire pump laser and signal and idler pulses from an infrared two-stage optical parametric amplifier driven by this pump laser. With full active stabilization of all relative time delays, relative phases, and the carrier-envelope phase, a shot-to-shot stable intense continuum harmonic spectrum is obtained around 60 eV with pulse energy above 0.24 µJ. The peak power of the soft x-ray continuum is evaluated to be beyond 1 GW with a 170-as transform limit duration. We found a characteristic delay dependence of the multicycle waveform synthesizer and established its control scheme. Compared with the one-color case, we experimentally observe an enhancement of the cutoff spectrum intensity by one to two orders of magnitude using three-color waveform synthesis.

16.
Sci Rep ; 8(1): 7692, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769544

RESUMO

Expansion of the wavelength range for an ultrafast laser is an important ingredient for extending its range of applications. Conventionally, optical parametric amplification (OPA) has been employed to expand the laser wavelength to the infrared (IR) region. However, the achievable pulse energy and peak power have been limited to the mJ and the GW level, respectively. A major difficulty in the further energy scaling of OPA results from a lack of suitable large nonlinear crystals. Here, we circumvent this difficulty by employing a dual-chirped optical parametric amplification (DC-OPA) scheme. We successfully generate a multi-TW IR femtosecond laser pulse with an energy of 100 mJ order, which is higher than that reported in previous works. We also obtain excellent energy scaling ability, ultrashort pulses, flexiable wavelength tunability, and high-energy stability, which prove that DC-OPA is a superior method for the energy scaling of IR pulses to the 10 J/PW level.

17.
Phys Rev Lett ; 99(5): 053904, 2007 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-17930755

RESUMO

We present a dramatic enhancement [Phys. Rev. Lett. 91, 043002 (2003)] of high-order harmonic generation by simultaneous irradiation of booster harmonics. A key feature of our experiment is the use of mixed gases (Xe and He) with different ionization energies. The harmonics from Xe atoms act as a booster to increase the harmonic yield from He by a factor of 4 x 10(3). The dominance of the dramatic enhancement effect is supported by simulation with the time-dependent Schrödinger equation as well as the observed spatial characteristic of the generated harmonics and dependence on medium conditions.

18.
Nat Commun ; 7: 12835, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27647423

RESUMO

The control of the electronic states of a hydrogen molecular ion by photoexcitation is considerably difficult because it requires multiple sub-10 fs light pulses in the extreme ultraviolet (XUV) wavelength region with a sufficiently high intensity. Here, we demonstrate the control of the dissociation pathway originating from the 2pσu electronic state against that originating from the 2pπu electronic state in a hydrogen molecular ion by using a pair of attosecond pulse trains in the XUV wavelength region with a train-envelope duration of ∼4 fs. The switching time from the peak to the valley in the oscillation caused by the vibrational wavepacket motion in the 1sσg ground electronic state is only 8 fs. This result can be classified as the fastest control, to the best of our knowledge, of a molecular reaction in the simplest molecule on the basis of the XUV-pump and XUV-probe scheme.

19.
Nat Commun ; 6: 8197, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26324319

RESUMO

The vibrational wavepacket of a diatomic molecular ion at the time of ionization is usually considered to be generated on the basis of the Franck-Condon principle. According to this principle, the amplitude of each vibrational wavefunction in the wavepacket is given by the overlap integral between each vibrational wavefunction and the ground vibrational wavefunction in the neutral molecule, and hence, the amplitude should be a real number, or equivalently, a complex number the phase of which is equal to zero. Here we report the observation of a non-trivial phase modulation of the amplitudes of vibrational wavefunctions in a wavepacket generated in the ground electronic state of a H2⁺ molecular ion at the time of ionization. The phase modulation results in a group delay of the specific vibrational states of order 1 fs, which can be regarded as the settling time required to compose the initial vibrational wavepacket.

20.
Sci Rep ; 5: 11366, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26068640

RESUMO

We propose a novel method to determine the complex amplitude of each eigenfunction composing a vibrational wavepacket of / molecular ions evolving with a ~10 fs time scale. We find that the two-dimensional spectrogram of the kinetic energy release (KER) of H(+)/D(+) fragments plotted against the time delay of the probe pulse is equivalent to the spectrogram used in the frequency-resolved optical gating (FROG) technique to retrieve the complex amplitude of an ultrashort optical pulse. By adapting the FROG algorithm to the delay-KER spectrogram of the vibrational wavepacket, we have successfully reconstructed the complex amplitude. The deterioration in retrieval accuracy caused by the bandpass filter required to process actual experimental data is also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA