Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 226(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37092255

RESUMO

Foot structures define the leverage in which the ankle muscles push off against the ground during locomotion. While prior studies have indicated that inter-individual variation in anthropometry (e.g. heel and hallux lengths) can directly affect force production of ankle plantar flexor muscles, its effect on the metabolic energy cost of locomotion has been inconclusive. Here, we tested the hypotheses that shorter heels and longer halluces are associated with slower plantar flexor (soleus) shortening velocity and greater ankle plantar flexion moment, indicating enhanced force potential as a result of the force-velocity relationship. We also hypothesized that such anthropometry profiles would reduce the metabolic energy cost of walking at faster walking speeds. Healthy young adults (N=15) walked at three speeds (1.25, 1.75 and 2.00 m s-1), and we collected in vivo muscle mechanics (via ultrasound), activation (via electromyography) and whole-body metabolic energy cost of transport (via indirect calorimetry). Contrary to our hypotheses, shorter heels and longer halluces were not associated with slower soleus shortening velocity or greater plantar flexion moment. Additionally, longer heels were associated with reduced metabolic cost of transport, but only at the fastest speed (2.00 m s-1, R2=0.305, P=0.033). We also found that individuals with longer heels required less increase in plantar flexor (soleus and gastrocnemius) muscle activation to walk at faster speeds, potentially explaining the reduced metabolic cost.


Assuntos
, Velocidade de Caminhada , Adulto Jovem , Humanos , Pé/fisiologia , Tornozelo/fisiologia , Músculo Esquelético/fisiologia , Caminhada/fisiologia , Eletromiografia , Fenômenos Biomecânicos/fisiologia , Antropometria , Marcha/fisiologia
2.
Exp Brain Res ; 240(4): 1159-1176, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35165776

RESUMO

An exoskeletal device can assist walking in those with gait deficits. A passive exoskeleton can be a favorable choice for local or home rehabilitation settings because it is affordable, light weight, and less complex to utilize. While there is research that investigates the effects of exoskeleton on gait research examining the effects of such devices on gait adaptation, is rare. This is important because in diseases like stroke, the ability to flexibly adapt is affected, such that functional recovery becomes difficult. The purpose of this study was to characterize gait adaptation patterns that result from exoskeleton usage during a split-belt adaptation task. Healthy young participants were randomly assigned to a unilateral exoskeleton or a no-exoskeleton group. Each participant performed the specific split-belt adaptation tasks on the treadmill, where the speed of each belt could be controlled independently. Symmetry indices of spatiotemporal variables were calculated to quantify gait adaptation. To analyze the adaptation, trials were divided into early and late adaptation. We also analyzed degree of adaptation, and transfer effects. We also measured the symmetry of the positive power generated by the individual legs during the split-belt task to determine if using exoskeleton assistance reduced power in the exoskeleton group versus the no-exoskeleton group. Use of a passive exoskeleton device altered gait adaptation during a split-belt treadmill task in comparison to the control group. Such adaptation was found to be largely restricted to the temporal domain. Changes in the gait coordination patterns consisted of both early and late adaptive changes, especially in intra-limb patterns like stance time rather than inter-limb patterns like step time. Although the symmetry of the positive power generated during the split-belt task was found to be reduced for the exoskeleton-assistance group, it was shown that this was primarily the result of increased positive power generated by the side not receiving exoskeletal assistance. An unpowered assistive device can provide a unique solution for coordinating the lower limbs during different gait tasks. Such a solution could reduce the neural burden of adaptation consequently resulting in a reduction of the mechanical burden of walking during the bilateral gait coordination task. This may be useful for accelerating gait rehabilitation in different patient populations. However, balance control is important to consider during unilateral exoskeletal assistance.


Assuntos
Exoesqueleto Energizado , Adaptação Fisiológica , Teste de Esforço , Marcha , Humanos , Caminhada
3.
J Neuroeng Rehabil ; 18(1): 143, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548080

RESUMO

BACKGROUND: A shock-absorbing pylon (SAP) is a modular prosthetic component designed to attenuate impact forces, which unlike traditional pylons that are rigid, can compress to absorb, return, or dissipate energy. Previous studies found that walking with a SAP improved lower-limb prosthesis users' comfort and residual limb pain. While longitudinal stiffness of a SAP has been shown to affect gait kinematics, kinetics, and work done by the entire lower limb, the energetic contributions from the prosthesis and the intact joints have not been examined. The purpose of this study was to determine the effects of SAP stiffness and walking speed on the mechanical work contributions of the prosthesis (i.e., all components distal to socket), knee, and hip in individuals with a transtibial amputation. METHODS: Twelve participants with unilateral transtibial amputation walked overground at their customary (1.22 ± 0.18 ms-1) and fast speeds (1.53 ± 0.29 ms-1) under four different levels of SAP stiffness. Power and mechanical work profiles of the leg joints and components distal to the socket were quantified. The effects of SAP stiffness and walking speed on positive and negative work were analyzed using two-factor (stiffness and speed) repeated-measure ANOVAs (α = 0.05). RESULTS: Faster walking significantly increased mechanical work from the SAP-integrated prosthesis (p < 0.001). Reducing SAP stiffness increased the magnitude of prosthesis negative work (energy absorption) during early stance (p = 0.045) by as much as 0.027 Jkg-1, without affecting the positive work (energy return) during late stance (p = 0.159), suggesting a damping effect. This energy loss was partially offset by an increase in residual hip positive work (as much as 0.012 Jkg-1) during late stance (p = 0.045). Reducing SAP stiffness also reduced the magnitude of negative work on the contralateral sound limb during early stance by 11-17% (p = 0.001). CONCLUSIONS: Reducing SAP stiffness and faster walking amplified the prostheses damping effect, which redistributed the mechanical work, both in magnitude and timing, within the residual joints and sound limb. With its capacity to absorb and dissipate energy, future studies are warranted to determine whether SAPs can provide additional user benefit for locomotor tasks that require greater attenuation of impact forces (e.g., load carriage) or energy dissipation (e.g., downhill walking).


Assuntos
Membros Artificiais , Amputação Cirúrgica , Fenômenos Biomecânicos , Marcha , Humanos , Desenho de Prótese , Caminhada
4.
J Exp Biol ; 223(Pt 12)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591339

RESUMO

The human foot serves numerous functional roles during walking, including shock absorption and energy return. Here, we investigated walking with added mass to determine how the foot would alter its mechanical work production in response to a greater force demand. Twenty-one healthy young adults walked with varying levels of added body mass: 0%, +15% and +30% (relative to their body mass). We quantified mechanical work performed by the foot using a unified deformable segment analysis and a multi-segment foot model. We found that walking with added mass tended to magnify certain features of the foot's functions. Magnitudes of both positive and negative mechanical work, during stance in the foot, increased when walking with added mass. Yet, the foot preserved similar amounts of net negative work, indicating that the foot dissipates energy overall. Furthermore, walking with added mass increased the foot's negative work during early stance phase, highlighting the foot's role as a shock-absorber. During mid to late stance, the foot produced greater positive work when walking with added mass, which coincided with greater work from the structures spanning the midtarsal joint (i.e. arch). While this study captured the overall behavior of the foot when walking with varying force demands, future studies are needed to further determine the relative contribution of active muscles and elastic tissues to the foot's overall energy.


Assuntos
, Caminhada , Fenômenos Biomecânicos , Marcha , Humanos , Adulto Jovem
5.
J Exp Biol ; 222(Pt 14)2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31253712

RESUMO

During walking, uneven surfaces impose new demands for controlling balance and forward progression at each step. It is unknown to what extent walking may be refined given an amount of stride-to-stride unpredictability at the distal level. Here, we explored the effects of an uneven terrain surface on whole-body locomotor dynamics immediately following exposure and after a familiarization period. Eleven young, unimpaired adults walked for 12 min on flat and uneven terrain treadmills. The whole-body center of mass excursion range (COMexc) and peak velocity (COMvel), step length and width were estimated. On first exposure to uneven terrain, we saw significant increases in medial-lateral COMexc and lateral COMvel, and in the variability of COMexc, COMvel and foot placement in both anterior-posterior and medial-lateral directions. Increases in step width and decreases in step length supported the immediate adoption of a cautious, restrictive solution on uneven terrain. After familiarization, step length increased and the variability of anterior-posterior COMvel and step length reduced, while step width and lateral COMvel reduced, alluding to a refinement of movement and a reduction of conservative strategies over time. However, the variability of medial-lateral COMexc and lateral COMvel increased, consistent with the release of previously constrained degrees of freedom. Despite this increase in variability, a strong relationship between step width and medial-lateral center of mass movement was maintained. Our results indicate that movement strategies of unimpaired adults when walking on uneven terrain can evolve over time with longer exposure to the surface.


Assuntos
Equilíbrio Postural , Caminhada , Adulto , Fenômenos Biomecânicos , Teste de Esforço , Marcha , Humanos , Adulto Jovem
6.
J Neuroeng Rehabil ; 16(1): 25, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30717750

RESUMO

BACKGROUND: Uneven ground is a frequently encountered, yet little-studied challenge for individuals with amputation. The absence of control at the prosthetic ankle to facilitate correction for surface inconsistencies, and diminished sensory input from the extremity, add unpredictability to an already complex control problem, and leave limited means to produce appropriate corrective responses in a timely manner. Whole body angular momentum, L, and its variability across several strides may provide insight into the extent to which an individual can regulate their movement in such a context. The aim of this study was to explore L in individuals with a transtibial amputation, when challenged by an uneven surface. We hypothesized that, similar to previous studies, sagittal plane L would be asymmetrical on uneven terrain, and further, that uneven terrain would evoke a greater variability in L from stride to stride in individuals with amputation in comparison to unimpaired individuals, due to a limited ability to discern and correct for changing contours beneath the prosthetic foot. METHODS: We examined sagittal plane L in ten individuals with a unilateral transtibial amputation and age- and gender- matched control participants walking on flat (FT) and uneven (UT) treadmills. The average range of L in the first 50% of the gait cycle (LR), the average L at foot contact (LC) and their standard deviations (vLR, vLC) were computed over 60 strides on each treadmill. RESULTS: On both surfaces we observed a higher LR on the prosthetic side and a reduced LC on the sound side (p < 0.001) in the amputee cohort, consistent with previous findings. UT invoked an increase in LC (p = 0.006), but not LR (p = 0.491). vLR, and vLC were higher in individuals with amputation (p < 0.001, p = 0.002), and increased in both groups on UT (p < 0.001). CONCLUSIONS: These findings support previous assertions that individuals with amputation regulate L less effectively, and suggest that the deficits of the prosthesis are exacerbated on uneven terrain, potentially to the detriment of balance. Further, the results indicate that a greater demand may be placed on the unaffected side to control movement.


Assuntos
Amputação Cirúrgica , Amputados , Membros Artificiais , Meio Ambiente , Adulto , Idoso , Algoritmos , Fenômenos Biomecânicos , Estudos de Coortes , Feminino , , Marcha , Humanos , Masculino , Pessoa de Meia-Idade , Equilíbrio Postural
7.
J Neuroeng Rehabil ; 16(1): 148, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752942

RESUMO

BACKGROUND: The human ankle joint has an influential role in the regulation of the mechanics and energetics of gait. The human ankle can modulate its joint 'quasi-stiffness' (ratio of plantarflexion moment to dorsiflexion displacement) in response to various locomotor tasks (e.g., load carriage). However, the direct effect of ankle stiffness on metabolic energy cost during various tasks is not fully understood. The purpose of this study was to determine how net metabolic energy cost was affected by ankle stiffness while walking under different force demands (i.e., with and without additional load). METHODS: Individuals simulated an amputation by using an immobilizer boot with a robotic ankle-foot prosthesis emulator. The prosthetic emulator was controlled to follow five ankle stiffness conditions, based on literature values of human ankle quasi-stiffness. Individuals walked with these five ankle stiffness settings, with and without carrying additional load of approximately 30% of body mass (i.e., ten total trials). RESULTS: Within the range of stiffness we tested, the highest stiffness minimized metabolic cost for both load conditions, including a ~ 3% decrease in metabolic cost for an increase in stiffness of about 0.0480 Nm/deg/kg during normal (no load) walking. Furthermore, the highest stiffness produced the least amount of prosthetic ankle-foot positive work, with a difference of ~ 0.04 J/kg from the highest to lowest stiffness condition. Ipsilateral hip positive work did not significantly change across the no load condition but was minimized at the highest stiffness for the additional load conditions. For the additional load conditions, the hip work followed a similar trend as the metabolic cost, suggesting that reducing positive hip work can lower metabolic cost. CONCLUSION: While ankle stiffness affected the metabolic cost for both load conditions, we found no significant interaction effect between stiffness and load. This may suggest that the importance of the human ankle's ability to change stiffness during different load carrying tasks may not be driven to minimize metabolic cost. A prosthetic design that can modulate ankle stiffness when transitioning from one locomotor task to another could be valuable, but its importance likely involves factors beyond optimizing metabolic cost.


Assuntos
Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos/fisiologia , Metabolismo Energético/fisiologia , Prótese Articular , Caminhada/fisiologia , Adulto , Feminino , Humanos , Masculino , Robótica
8.
J Exp Biol ; 221(Pt 22)2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30237239

RESUMO

Minimizing the metabolic cost of transport can affect selection of the preferred walking speed. While many factors can affect metabolic cost of transport during human walking, its interaction with step-to-step variability is unclear. Here, we aimed to determine the interaction between metabolic cost of transport and step length variability during human walking at different speeds. In particular, two aspects of step length variability were analyzed: the amount of variations ('variations') and the organization of the step-to-step fluctuations ('fluctuations'). Ten healthy, young participants walked on a treadmill at five speeds, ranging from 0.75 to 1.75 m s-1 Metabolic cost of transport, step length variations (coefficient of variation) and step length fluctuations (quantified via detrended fluctuation analysis) were calculated. A mixed-model ANOVA revealed that variations and walking speed were strong predictors of metabolic cost of transport (R2=0.917, P<0.001), whereas fluctuations were not. Preferred walking speed (1.05±0.20 m s-1) was not significantly different from the speed at which metabolic cost of transport was minimized (1.04±0.05 m s-1; P=0.792), nor from the speed at which fluctuations were most persistent (1.00±0.41 m s-1; P=0.698). The minimization of variations occurred at a faster speed (1.56±0.17 m s-1) than the preferred walking speed (P<0.001). Step length variations likely affect metabolic cost of transport because greater variations are indicative of suboptimal, mechanically inefficient steps. Fluctuations have little or no effect on metabolic cost of transport, but still may relate to preferred walking speed.


Assuntos
Metabolismo Energético , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Marcha/fisiologia , Humanos , Masculino
9.
J Neuroeng Rehabil ; 15(1): 6, 2018 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-29374491

RESUMO

BACKGROUND: There are many studies that have investigated biomechanical differences among prosthetic feet, but not changes due to adaptation over time. There is a need for objective measures to quantify the process of adaptation for individuals with a transtibial amputation. Mechanical power and work profiles are a primary focus for modern energy-storage-and-return type prostheses, which strive to increase energy return from the prosthesis. The amount of energy a prosthesis stores and returns (i.e., negative and positive work) during stance is directly influenced by the user's loading strategy, which may be sensitive to alterations during the course of an adaptation period. The purpose of this study was to examine changes in lower limb mechanical work profiles during walking following a three-week adaptation to a new prosthesis. METHODS: A retrospective analysis was performed on 22 individuals with a unilateral transtibial amputation. Individuals were given a new prosthesis at their current mobility level (K3 or above) and wore it for three weeks. Kinematic and kinetic measures were recorded from overground walking at 0, 1.5, and 3 weeks into the adaptation period at a self-selected pace. Positive and negative work done by the prosthesis and sound ankle-foot were calculated using a unified deformable segment model and a six-degrees-of-freedom model for the knee and hip. RESULTS: Positive work from the prosthesis ankle-foot increased by 6.1% and sound ankle-foot by 5.7% after 3 weeks (p = 0.041, 0.036). No significant changes were seen in negative work from prosthesis or sound ankle-foot (p = 0.115, 0.192). There was also a 4.1% increase in self-selected walking speed after 3 weeks (p = 0.038). Our data exhibited large inter-subject variations, in which some individuals followed group trends in work profiles while others had opposite trends in outcome variables. CONCLUSIONS: After a 3-week adaptation, 14 out of 22 individuals with a transtibial amputation increased energy return from the prosthesis. Such findings could indicate that individuals may better utilize the spring-like function of the prosthesis after an adaptation period.


Assuntos
Adaptação Fisiológica/fisiologia , Membros Artificiais , Metabolismo Energético/fisiologia , Caminhada/fisiologia , Adulto , Amputação Cirúrgica , Fenômenos Biomecânicos , Feminino , Humanos , Cinética , Extremidade Inferior , Masculino , Pessoa de Meia-Idade , Desenho de Prótese , Estudos Retrospectivos
10.
J Exp Biol ; 218(Pt 6): 876-86, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25788726

RESUMO

Measuring biomechanical work performed by humans and other animals is critical for understanding muscle-tendon function, joint-specific contributions and energy-saving mechanisms during locomotion. Inverse dynamics is often employed to estimate joint-level contributions, and deformable body estimates can be used to study work performed by the foot. We recently discovered that these commonly used experimental estimates fail to explain whole-body energy changes observed during human walking. By re-analyzing previously published data, we found that about 25% (8 J) of total positive energy changes of/about the body's center-of-mass and >30% of the energy changes during the Push-off phase of walking were not explained by conventional joint- and segment-level work estimates, exposing a gap in our fundamental understanding of work production during gait. Here, we present a novel Energy-Accounting analysis that integrates various empirical measures of work and energy to elucidate the source of unexplained biomechanical work. We discovered that by extending conventional 3 degree-of-freedom (DOF) inverse dynamics (estimating rotational work about joints) to 6DOF (rotational and translational) analysis of the hip, knee, ankle and foot, we could fully explain the missing positive work. This revealed that Push-off work performed about the hip may be >50% greater than conventionally estimated (9.3 versus 6.0 J, P=0.0002, at 1.4 m s(-1)). Our findings demonstrate that 6DOF analysis (of hip-knee-ankle-foot) better captures energy changes of the body than more conventional 3DOF estimates. These findings refine our fundamental understanding of how work is distributed within the body, which has implications for assistive technology, biomechanical simulations and potentially clinical treatment.


Assuntos
Articulação do Tornozelo/fisiologia , Pé/fisiologia , Articulação do Quadril/fisiologia , Articulação do Joelho/fisiologia , Caminhada , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Adulto Jovem
11.
J Neuroeng Rehabil ; 12: 23, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25889283

RESUMO

BACKGROUND: In persons post-stroke, diminished ankle joint function can contribute to inadequate gait propulsion. To target paretic ankle impairments, we developed a neuromechanics-based powered ankle exoskeleton. Specifically, this exoskeleton supplies plantarflexion assistance that is proportional to the user's paretic soleus electromyography (EMG) amplitude only during a phase of gait when the stance limb is subjected to an anteriorly directed ground reaction force (GRF). The purpose of this feasibility study was to examine the short-term effects of the powered ankle exoskeleton on the mechanics and energetics of gait. METHODS: Five subjects with stroke walked with a powered ankle exoskeleton on the paretic limb for three 5 minute sessions. We analyzed the peak paretic ankle plantarflexion moment, paretic ankle positive work, symmetry of GRF propulsion impulse, and net metabolic power. RESULTS: The exoskeleton increased the paretic plantarflexion moment by 16% during the powered walking trials relative to unassisted walking condition (p < .05). Despite this enhanced paretic ankle moment, there was no significant increase in paretic ankle positive work, or changes in any other mechanical variables with the powered assistance. The exoskeleton assistance appeared to reduce the net metabolic power gradually with each 5 minute repetition, though no statistical significance was found. In three of the subjects, the paretic soleus activation during the propulsion phase of stance was reduced during the powered assistance compared to unassisted walking (35% reduction in the integrated EMG amplitude during the third powered session). CONCLUSIONS: This feasibility study demonstrated that the exoskeleton can enhance paretic ankle moment. Future studies with greater sample size and prolonged sessions are warranted to evaluate the effects of the powered ankle exoskeleton on overall gait outcomes in persons post-stroke.


Assuntos
Tornozelo , Membros Artificiais , Reabilitação do Acidente Vascular Cerebral , Caminhada , Idoso , Idoso de 80 Anos ou mais , Articulação do Tornozelo , Fenômenos Biomecânicos , Biônica , Eletromiografia , Metabolismo Energético , Estudos de Viabilidade , Feminino , , Humanos , Masculino , Fenômenos Mecânicos , Pessoa de Meia-Idade , Paresia/reabilitação , Desenho de Prótese , Robótica
12.
PLoS One ; 18(9): e0286521, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37695795

RESUMO

When humans walk on slopes, the ankle, knee, and hip joints modulate their mechanical work to accommodate the mechanical demands. Yet, it is unclear if the foot modulates its work output during uphill and downhill walking. Therefore, we quantified the mechanical work performed by the foot and its subsections of twelve adults walked on five randomized slopes (-10°, -5°, 0°, +5°, +10°). We estimated the work of distal-to-hindfoot and distal-to-forefoot structures using unified deformable segment analysis and the work of the midtarsal, ankle, knee, and hip joints using a six-degree-of-freedom model. Further, using a geometric model, we estimated the length of the plantar structures crossing the longitudinal arch while accounting for the first metatarsophalangeal wrapping length. We hypothesized that compared to level walking, downhill walking would increase negative and net-negative work magnitude, particularly at the early stance phase, and uphill walking would increase the positive work, particularly at the mid-to-late stance phase. We found that downhill walking increased the magnitude of the foot's negative and net-negative work, especially during early stance, highlighting its capacity to absorb impacts when locomotion demands excessive energy dissipation. Notably, the foot maintained its net dissipative behavior between slopes; however, the ankle, knee, and hip shifted from net energy dissipation to net energy generation when changing from downhill to uphill. Such results indicate that humans rely more on joints proximal to the foot to modulate the body's total mechanical energy. Uphill walking increased midtarsal's positive and distal-to-forefoot negative work in near-equal amounts. That coincided with the prolonged lengthening and delayed shortening of the plantar structures, resembling a spring-like function that possibly assists the energetic demands of locomotion during mid-to-late stance. These results broaden our understanding of the foot's mechanical function relative to the leg's joints and could inspire the design of wearable assistive devices that improve walking capacity.


Assuntos
, Extremidade Inferior , Adulto , Humanos , Caminhada , Locomoção , Articulação do Joelho
13.
Front Robot AI ; 10: 1183170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538962

RESUMO

Introduction: Human-in-the-loop optimization algorithms have proven useful in optimizing complex interactive problems, such as the interaction between humans and robotic exoskeletons. Specifically, this methodology has been proven valid for reducing metabolic cost while wearing robotic exoskeletons. However, many prostheses and orthoses still consist of passive elements that require manual adjustments of settings. Methods: In the present study, we investigated if human-in-the-loop algorithms could guide faster manual adjustments in a procedure similar to fitting a prosthesis. Eight healthy participants wore a prosthesis simulator and walked on a treadmill at 0.8 ms-1 under 16 combinations of shoe heel height and pylon height. A human-in-the-loop optimization algorithm was used to find an optimal combination for reducing the loading rate on the limb contralateral to the prosthesis simulator. To evaluate the performance of the optimization algorithm, we used a convergence criterium. We evaluated the accuracy by comparing it against the optimum from a full sweep of all combinations. Results: In five out of the eight participants, the human-in-the-loop optimization reduced the time taken to find an optimal combination; however, in three participants, the human-in-the-loop optimization either converged by the last iteration or did not converge. Discussion: Findings from this study show that the human-in-the-loop methodology could be helpful in tasks that require manually adjusting an assistive device, such as optimizing an unpowered prosthesis. However, further research is needed to achieve robust performance and evaluate applicability in persons with amputation wearing an actual prosthesis.

14.
Front Bioeng Biotechnol ; 10: 908725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832413

RESUMO

Most of the terrestrial legged locomotion gaits, like human walking, necessitate energy dissipation upon ground collision. In humans, the heel mostly performs net-negative work during collisions, and it is currently unclear how it dissipates that energy. Based on the laws of thermodynamics, one possibility is that the net-negative collision work may be dissipated as heat. If supported, such a finding would inform the thermoregulation capacity of human feet, which may have implications for understanding foot complications and tissue damage. Here, we examined the correlation between energy dissipation and thermal responses by experimentally increasing the heel's collisional forces. Twenty healthy young adults walked overground on force plates and for 10 min on a treadmill (both at 1.25 ms-1) while wearing a vest with three different levels of added mass (+0%, +15%, & +30% of their body mass). We estimated the heel's work using a unified deformable segment analysis during overground walking. We measured the heel's temperature immediately before and after each treadmill trial. We hypothesized that the heel's temperature and net-negative work would increase when walking with added mass, and the temperature change is correlated with the increased net-negative work. We found that walking with +30% added mass significantly increased the heel's temperature change by 0.72 ± 1.91   ℃ (p = 0.009) and the magnitude of net-negative work (extrapolated to 10 min of walking) by 326.94 ± 379.92 J (p = 0.005). However, we found no correlation between the heel's net-negative work and temperature changes (p = 0.277). While this result refuted our second hypothesis, our findings likely demonstrate the heel's dynamic thermoregulatory capacity. If all the negative work were dissipated as heat, we would expect excessive skin temperature elevation during prolonged walking, which may cause skin complications. Therefore, our results likely indicate that various heat dissipation mechanisms control the heel's thermodynamic responses, which may protect the health and integrity of the surrounding tissue. Also, our results indicate that additional mechanical factors, besides energy dissipation, explain the heel's temperature rise. Therefore, future experiments may explore alternative factors affecting thermodynamic responses, including mechanical (e.g., sound & shear-stress) and physiological mechanisms (e.g., sweating, local metabolic rate, & blood flow).

15.
Front Physiol ; 13: 810079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185618

RESUMO

Stochastic resonance has been successfully used to improve human movement when using subthreshold vibration. Recent work has shown promise in improving mobility in individuals with unilateral lower limb amputations. Furthering this work, we present an investigation of two different signal structures in the use of stochastic resonance to improve mobility in individuals with unilateral lower limb amputations. Cutaneous somatosensation and standing balance measures using spatial and temporal analysis were assessed. There were no differences in the somatosensation measures, but differences in the temporal characteristics of the standing measures were seen with the various vibration structures when compared to no vibration, one of which suggesting mass may play an important role in determining who may or may not benefit from this intervention. Stochastic resonance employed with subthreshold vibration influences mobility in individuals with unilateral amputations, but the full direction and extent of influence is yet to be understood.

16.
Biomechanics (Basel) ; 2(4): 494-499, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38249991

RESUMO

Much of our current understanding of age-related declines in mobility has been aided by decades of investigations on the role of muscle-tendon units spanning major lower extremity joints (e.g., hip, knee and ankle) for powering locomotion. Yet, mechanical contributions from foot structures are often neglected. This is despite the emerging evidence for their critical importance in youthful locomotion. With rapid growth in the field of human foot biomechanics over the last decade, our theoretical knowledge of young asymptomatic feet has transformed, from long-held views of a stiff lever and a shock-absorber to a versatile system that can modulate mechanical power and energy output to accommodate various locomotor task demands. In this perspective review, we predict that the next set of impactful discoveries related to locomotion in older adults will emerge by integrating the novel tools and approaches that are currently transforming the field of human foot biomechanics. By illuminating the functions of feet in older adults, we envision that future investigations will refine our mechanistic understanding of mobility deficits affecting our aging population, which may ultimately inspire targeted interventions to rejuvenate the mechanics and energetics of locomotion.

17.
PeerJ ; 9: e10515, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33552710

RESUMO

BACKGROUND: The human foot typically changes temperature between pre and post-locomotion activities. However, the mechanisms responsible for temperature changes within the foot are currently unclear. Prior studies indicate that shear forces may increase foot temperature during locomotion. Here, we examined the shear-temperature relationship using turning gait with varying radii to manipulate magnitudes of shear onto the foot. METHODS: Healthy adult participants (N = 18) walked barefoot on their toes for 5 minutes at a speed of 1.0 m s-1 at three different radii (1.0, 1.5, and 2.0 m). Toe-walking was utilized so that a standard force plate could measure shear localized to the forefoot. A thermal imaging camera was used to quantify the temperature changes from pre to post toe-walking (ΔT), including the entire foot and forefoot regions on the external limb (limb farther from the center of the curved path) and internal limb. RESULTS: We found that shear impulse was positively associated with ΔT within the entire foot (P < 0.001) and forefoot (P < 0.001): specifically, for every unit increase in shear, the temperature of the entire foot and forefoot increased by 0.11 and 0.17 °C, respectively. While ΔT, on average, decreased following the toe-walking trials (i.e., became colder), a significant change in ΔT was observed between radii conditions and between external versus internal limbs. In particular, ΔT was greater (i.e., less negative) when walking at smaller radii (P < 0.01) and was greater on the external limb (P < 0.01) in both the entire foot and forefoot regions, which were likely explained by greater shear forces with smaller radii (P < 0.0001) and on the external limb (P < 0.0001). Altogether, our results support the relationship between shear and foot temperature responses. These findings may motivate studying turning gait in the future to quantify the relationship between shear and foot temperature in individuals who are susceptible to abnormal thermoregulation.

18.
J Biomech ; 123: 110499, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34015739

RESUMO

Older adults exhibit reductions in push-off power that are often attributed to deficits in plantarflexor force-generating capacity. However, growing evidence suggests that the foot may also contribute to push-off power during walking. Thus, age-related changes in foot structure and function may contribute to altered foot mechanics and ultimately reduced push-off power. The purpose of this paper was to quantify age-related differences in foot mechanical work during walking across a range of speeds and at a single fixed speed with varied demands for push-off power. 9 young and 10 older adults walked at 1.0, 1.2, and 1.4 m/s, and at 1.2 m/s with an aiding or impeding horizontal pulling force equal to 5% BW. We calculated foot work in Visual3D using a unified deformable foot model, accounting for contributions of structures distal to the hindfoot's center-of-mass. Older adults walked while performing less positive foot work and more negative net foot work (p < 0.05). Further, we found that the effect of age on mechanical work performed by the foot and the ankle-foot complex increased with increased locomotor demand (p < 0.05). Our findings suggest that during walking, age-related differences in foot mechanics may contribute to reduced push-off intensity via greater energy loss from distal foot structures, particularly during walking tasks with a greater demand for foot power generation. These findings are the first step in understanding the role of the foot in push-off power deficits in older adults and may serve as a roadmap for developing future low-cost mobility interventions.


Assuntos
Marcha , Caminhada , Tornozelo , Articulação do Tornozelo , Fenômenos Biomecânicos
19.
Sci Rep ; 10(1): 8793, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472010

RESUMO

During locomotion, the human ankle-foot system dynamically alters its gearing, or leverage of the ankle joint on the ground. Shifting ankle-foot gearing regulates speed of plantarflexor (i.e., calf muscle) contraction, which influences economy of force production. Here, we tested the hypothesis that manipulating ankle-foot gearing via stiff-insoled shoes will change the force-velocity operation of plantarflexor muscles and influence whole-body energy cost differently across walking speeds. We used in vivo ultrasound imaging to analyze fascicle contraction mechanics and whole-body energy expenditure across three walking speeds (1.25, 1.75, and 2.0 m/s) and three levels of foot stiffness. Stiff insoles increased leverage of the foot upon the ground  (p < 0.001), and increased dorsiflexion range-of-motion (p < 0.001). Furthermore, stiff insoles resulted in a 15.9% increase in average force output (p < 0.001) and 19.3% slower fascicle contraction speed (p = 0.002) of the major plantarflexor (Soleus) muscle, indicating a shift in its force-velocity operating region. Metabolically, the stiffest insoles increased energy cost by 9.6% at a typical walking speed (1.25 m/s, p = 0.026), but reduced energy cost by 7.1% at a fast speed (2.0 m/s, p = 0.040). Stiff insoles appear to add an extra gear unavailable to the human foot, which can enhance muscular performance in a specific locomotion task.


Assuntos
Tornozelo/fisiologia , Fascículo Atrioventricular/fisiologia , Pé/fisiologia , Velocidade de Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Metabolismo Energético , Feminino , Órtoses do Pé , Humanos , Masculino , Músculo Esquelético/fisiologia , Ultrassonografia , Caminhada/fisiologia , Adulto Jovem
20.
J Biomech ; 100: 109600, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31959389

RESUMO

Measuring postural sway is important for determining functional ability or risk of falling. Gathering postural sway measures outside of controlled environments is desirable for reaching populations with limited mobility. Previous studies have confirmed the accuracy of the magnitude of postural sway using the Nintendo Wii Balance Board (WBB). However, it is unclear if the WBB can accurately measure persistence of postural sway, i.e., the pattern of center-of-pressure fluctuations over time. The purpose of this study was to compare measures of persistence of postural sway (through detrended fluctuation analysis) using WBB and a force platform (FP). Seventeen healthy individuals performed three standing conditions: eyes open, eyes closed, and one-leg standing. The WBB (30 Hz) was placed on top on the FP (600 Hz) to collect data simultaneously, then the FP data were downsampled to 100 Hz and 30 Hz. The agreement between WBB and FP for measures of postural sway were influenced by the sampling rate and postural sway direction. Intraclass correlation coefficient was excellent (range: 0.953-0.998) for long-term scaling regions in the anterior-posterior direction, but lower (range: 0.352-0.877) and inconsistent for medial-lateral direction and short-term scaling regions. The three comparison groups (WBB at 30 Hz, FP at 30 Hz, and FP at 100 Hz) showed dissimilar abilities in detecting differences in persistence of postural sway. In summary, the WBB is accurate for quantifying persistence of postural sway measurements in long-term scaling regions in the AP direction, but has limitations for short-term scaling regions and the ML direction.


Assuntos
Equilíbrio Postural , Jogos de Vídeo , Acidentes por Quedas , Feminino , Humanos , Masculino , Posição Ortostática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA