Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 153(5): 1268-1281, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38551536

RESUMO

BACKGROUND: Novel biomarkers (BMs) are urgently needed for bronchial asthma (BA) with various phenotypes and endotypes. OBJECTIVE: We sought to identify novel BMs reflecting tissue pathology from serum extracellular vesicles (EVs). METHODS: We performed data-independent acquisition of serum EVs from 4 healthy controls, 4 noneosinophilic asthma (NEA) patients, and 4 eosinophilic asthma (EA) patients to identify novel BMs for BA. We confirmed EA-specific BMs via data-independent acquisition validation in 61 BA patients and 23 controls. To further validate these findings, we performed data-independent acquisition for 6 patients with chronic rhinosinusitis without nasal polyps and 7 patients with chronic rhinosinusitis with nasal polyps. RESULTS: We identified 3032 proteins, 23 of which exhibited differential expression in EA. Ingenuity pathway analysis revealed that protein signatures from each phenotype reflected disease characteristics. Validation revealed 5 EA-specific BMs, including galectin-10 (Gal10), eosinophil peroxidase, major basic protein, eosinophil-derived neurotoxin, and arachidonate 15-lipoxygenase. The potential of Gal10 in EVs was superior to that of eosinophils in terms of diagnostic capability and detection of airway obstruction. In rhinosinusitis patients, 1752 and 8413 proteins were identified from EVs and tissues, respectively. Among 11 BMs identified in EVs and tissues from patients with chronic rhinosinusitis with nasal polyps, 5 (including Gal10 and eosinophil peroxidase) showed significant correlations between EVs and tissues. Gal10 release from EVs was implicated in eosinophil extracellular trapped cell death in vitro and in vivo. CONCLUSION: Novel BMs such as Gal10 from serum EVs reflect disease pathophysiology in BA and may represent a new target for liquid biopsy approaches.


Assuntos
Asma , Biomarcadores , Vesículas Extracelulares , Galectinas , Sinusite , Humanos , Asma/sangue , Asma/fisiopatologia , Asma/imunologia , Asma/diagnóstico , Vesículas Extracelulares/metabolismo , Feminino , Masculino , Galectinas/sangue , Biomarcadores/sangue , Adulto , Pessoa de Meia-Idade , Sinusite/sangue , Sinusite/imunologia , Rinite/sangue , Rinite/imunologia , Rinite/fisiopatologia , Pólipos Nasais/imunologia , Pólipos Nasais/sangue , Eosinófilos/imunologia , Idoso , Doença Crônica
2.
Biochem Biophys Res Commun ; 716: 149991, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704888

RESUMO

Cholera toxin (Ctx) is a major virulence factor produced by Vibrio cholerae that can cause gastrointestinal diseases, including severe watery diarrhea and dehydration, in humans. Ctx binds to target cells through multivalent interactions between its B-subunit pentamer and the receptor ganglioside GM1 present on the cell surface. Here, we identified a series of tetravalent peptides that specifically bind to the receptor-binding region of the B-subunit pentamer using affinity-based screening of multivalent random-peptide libraries. These tetravalent peptides efficiently inhibited not only the cell-elongation phenotype but also the elevated cAMP levels, both of which are induced by Ctx treatment in CHO cells or a human colon carcinoma cell line (Caco-2 cells), respectively. Importantly, one of these peptides, NRR-tet, which was highly efficient in these two activities, markedly inhibited fluid accumulation in the mouse ileum caused by the direct injection of Ctx. In consistent, NRR-tet reduced the extensive Ctx-induced damage of the intestinal villi. After NRR-tet bound to Ctx, the complex was incorporated into the cultured epithelial cells and accumulated in the recycling endosome, affecting the retrograde transport of Ctx from the endosome to the Golgi, which is an essential process for Ctx to exert its toxicity in cells. Thus, NRR-tet may be a novel type of therapeutic agent against cholera, which induces the aberrant transport of Ctx in the intestinal epithelial cells, detoxifying the toxin.


Assuntos
Toxina da Cólera , Cricetulus , Toxina da Cólera/metabolismo , Humanos , Animais , Camundongos , Células CHO , Células CACO-2 , Peptídeos/farmacologia , Peptídeos/metabolismo , Peptídeos/química , Transporte Proteico/efeitos dos fármacos , Cólera/tratamento farmacológico , Cólera/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos
3.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982275

RESUMO

The antimicrobial peptide derived from insulin-like growth factor-binding protein 5 (AMP-IBP5) exhibits antimicrobial activities and immunomodulatory functions in keratinocytes and fibroblasts. However, its role in regulating skin barrier function remains unclear. Here, we investigated the effects of AMP-IBP5 on the skin barrier and its role in the pathogenesis of atopic dermatitis (AD). 2,4-Dinitrochlorobenzene was used to induce AD-like skin inflammation. Transepithelial electrical resistance and permeability assays were used to investigate tight junction (TJ) barrier function in normal human epidermal keratinocytes and mice. AMP-IBP5 increased the expression of TJ-related proteins and their distribution along the intercellular borders. AMP-IBP5 also improved TJ barrier function through activation of the atypical protein kinase C and Rac1 pathways. In AD mice, AMP-IBP5 ameliorated dermatitis-like symptoms restored the expression of TJ-related proteins, suppressed the expression of inflammatory and pruritic cytokines, and improved skin barrier function. Interestingly, the ability of AMP-IBP5 to alleviate inflammation and improve skin barrier function in AD mice was abolished in mice treated with an antagonist of the low-density lipoprotein receptor-related protein-1 (LRP1) receptor. Collectively, these findings indicate that AMP-IBP5 may ameliorate AD-like inflammation and enhance skin barrier function through LRP1, suggesting a possible role for AMP-IBP5 in the treatment of AD.


Assuntos
Dermatite Atópica , Humanos , Animais , Camundongos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Peptídeos Antimicrobianos , Queratinócitos/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Lipoproteínas LDL/metabolismo , Pele/metabolismo
4.
Biochem Biophys Res Commun ; 629: 95-100, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36115284

RESUMO

Subtilase cytotoxin (SubAB) is a major virulence factor produced by eae-negative Shiga-toxigenic Escherichia coli (STEC) that can cause fatal systemic complications. SubAB binds to target cells through multivalent interactions between its B-subunit pentamer and receptor molecules such as glycoproteins with a terminal N-glycolylneuraminic acid (Neu5Gc). We screened randomized multivalent peptide libraries synthesized on a cellulose membrane and identified a series of tetravalent peptides that efficiently bind to the receptor-binding region of the SubAB B-subunit pentamer. These peptides competitively inhibited the binding of the B-subunit to a receptor-mimic molecule containing clustered Neu5Gc (Neu5Gc-polymer). We selected the peptide with the highest inhibitory efficacy, FFP-tet, and covalently bound it to beads to synthesize FFP-tet-beads, a highly clustered SubAB absorber that displayed potency to absorb SubAB cytotoxicity through direct binding to the toxin. The efficacy of FFP-tet-beads to absorb SubAB cytotoxicity in solution was similar to that of Neu5Gc-polymer, suggesting that FFP-tet-beads might be an effective therapeutic agent against complications arising from eae-negative STEC infection.


Assuntos
Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Proteínas de Transporte/metabolismo , Celulose/metabolismo , Citotoxinas , Proteínas de Escherichia coli/metabolismo , Biblioteca de Peptídeos , Polímeros/metabolismo , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/metabolismo , Subtilisinas/toxicidade , Fatores de Virulência/metabolismo
5.
Biochem Biophys Res Commun ; 636(Pt 1): 178-183, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36334442

RESUMO

Inhibition of osteoclast differentiation is a promising approach for the treatment of osteoporosis and rheumatoid arthritis. Receptor activator of nuclear factor kappa B (NF-κB) (RANK), which is an essential molecule for osteoclast differentiation, interacts with tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) to transduce downstream signals. Both RANK and TRAF6 have homo-trimeric structures, forming a multivalent interaction between the Pro-X-Glu-X-X-(aromatic/acidic) motif of RANK and the C-terminal domain of TRAF6 (TRAF-C), that markedly increases the binding affinity. Here, we designed a tetravalent peptide, RANK-tet, containing the TRAF-C-binding motif of RANK and found that RANK-tet binds to TRAF-C with high affinity. In contrast, a monomeric form of RANK-tet (RANK-mono) with the same TRAF-C-binding motif did not bind to TRAF-C, clearly indicating the multivalent interaction is strictly required for the high-affinity binding to TRAF-C. RANK-tet did not bind to a series of TRAF-C-mutants with an amino acid substitution in the RANK-binding region, indicating that RANK-tet specifically targets the RANK-binding region of TRAF-C. A cell-permeable form of RANK-tet that has poly-Arg residues at each C-terminal of the TRAF-C-binding motif efficiently inhibited the RANK ligand (RANKL)-induced differentiation of bone marrow cells to osteoclasts. Thus, this compound can be an effective anti-osteoclastogenic agent.


Assuntos
Ligante RANK , Fator 6 Associado a Receptor de TNF , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Ligante RANK/metabolismo , Osteoclastos/metabolismo , NF-kappa B/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Diferenciação Celular/fisiologia
6.
Cancer Immunol Immunother ; 71(6): 1357-1369, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34657194

RESUMO

Lymphodepleting cytotoxic regimens enhance the antitumor effects of adoptively transferred effector and naïve T cells. Although the mechanisms of antitumor immunity augmentation by lymphodepletion have been intensively investigated, the effects of lymphodepletion followed by T cell transfer on immune checkpoints in the tumor microenvironment remain unclear. The current study demonstrated that the expression of immune checkpoint molecules on transferred donor CD4+ and CD8+ T cells was significantly decreased in lymphodepleted tumor-bearing mice. In contrast, lymphodepletion did not reduce immune checkpoint molecule levels on recipient CD4+ and CD8+ T cells. Administration of anti-PD-1 antibodies after lymphodepletion and adoptive transfer of T cells significantly inhibited tumor progression. Further analysis revealed that transfer of both donor CD4+ and CD8+ T cells was responsible for the antitumor effects of a combination therapy consisting of lymphodepletion, T cell transfer and anti-PD-1 treatment. Our findings indicate that a possible mechanism underlying the antitumor effects of lymphodepletion followed by T cell transfer is the prevention of donor T cell exhaustion and dysfunction. PD-1 blockade may reinvigorate exhausted recipient T cells and augment the antitumor effects of lymphodepletion and adoptive T cell transfer.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Transferência Adotiva , Animais , Humanos , Imunoterapia Adotiva , Camundongos , Neoplasias/terapia , Receptor de Morte Celular Programada 1 , Microambiente Tumoral
7.
Wound Repair Regen ; 30(2): 232-244, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35092133

RESUMO

Impaired keratinocyte functions are major factors that are responsible for delayed diabetic wound healing. In addition to its antimicrobial activity, the antimicrobial peptide derived from insulin-like growth factor-binding protein 5 (AMP-IBP5) activates mast cells and promotes keratinocyte and fibroblast proliferation and migration. However, its effects on diabetic wound healing remain unclear. Human keratinocytes were cultured in normal or high glucose milieus. The production of angiogenic growth factor and cell proliferation and migration were evaluated. Wounds in normal and streptozotocin-induced diabetic mice were monitored and histologically examined. We found that AMP-IBP5 rescued the high glucose-induced attenuation of proliferation and migration as well as the production of angiogenin and vascular endothelial growth factors in keratinocytes. The AMP-IBP5-induced activity was mediated by the epidermal growth factor receptor, signal transducer and activator of transcription 1 and 3, and mitogen-activated protein kinase pathways, as indicated by the inhibitory effects of pathway-specific inhibitors. In vivo, AMP-IBP5 markedly accelerated wound healing, increased the expression of angiogenic factors and promoted vessel formation in both normal and diabetic mice. Overall, the finding that AMP-IBP5 accelerated diabetic wound healing by protecting against glucotoxicity and promoting angiogenesis suggests that AMP-IBP5 might be a potential therapeutic target for treating chronic diabetic wounds.


Assuntos
Diabetes Mellitus Experimental , Somatomedinas , Animais , Camundongos , Peptídeos Antimicrobianos , Movimento Celular , Diabetes Mellitus Experimental/metabolismo , Glucose/farmacologia , Queratinócitos , Somatomedinas/metabolismo , Somatomedinas/farmacologia , Cicatrização
8.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955934

RESUMO

The skin produces a plethora of antimicrobial peptides that not only show antimicrobial activities against pathogens but also exhibit various immunomodulatory functions. Human ß-defensins (hBDs) are the most well-characterized skin-derived antimicrobial peptides and contribute to diverse biological processes, including cytokine production and the migration, proliferation, and differentiation of host cells. Additionally, hBD-3 was recently reported to promote wound healing and angiogenesis, by inducing the expression of various angiogenic factors and the migration and proliferation of fibroblasts. Angiogenin is one of the most potent angiogenic factors; however, the effects of hBDs on angiogenin production in fibroblasts remain unclear. Here, we investigated the effects of hBDs on the secretion of angiogenin by human dermal fibroblasts. Both in vitro and ex vivo studies demonstrated that hBD-1, hBD-2, hBD-3, and hBD-4 dose-dependently increased angiogenin production by fibroblasts. hBD-mediated angiogenin secretion involved the epidermal growth factor receptor (EGFR), Src family kinase, c-Jun N-terminal kinase (JNK), p38, and nuclear factor-kappa B (NF-κB) pathways, as evidenced by the inhibitory effects of specific inhibitors for these pathways. Indeed, we confirmed that hBDs induced the activation of the EGFR, Src, JNK, p38, and NF-κB pathways. This study identified a novel role of hBDs in angiogenesis, through the production of angiogenin, in addition to their antimicrobial activities and other immunomodulatory properties.


Assuntos
Anti-Infecciosos , beta-Defensinas , Anti-Infecciosos/farmacologia , Peptídeos Antimicrobianos , Células Cultivadas , Receptores ErbB , Fibroblastos/metabolismo , Humanos , NF-kappa B/metabolismo , Ribonuclease Pancreático , beta-Defensinas/metabolismo
9.
Biochem Biophys Res Commun ; 557: 247-253, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33894410

RESUMO

Accumulation of amyloid-ß peptide (Aß) in neuronal cells and in the extracellular regions in the brain is a major cause of Alzheimer's disease (AD); therefore, inhibition of Aß accumulation offers a promising approach for therapeutic strategies against AD. Aß is produced by sequential proteolysis of amyloid precursor protein (APP) in late/recycling endosomes after endocytosis of APP located in the plasma membrane. Aß is then released from cells in a free form or in an exosome-bound form. Shiga toxin (Stx) is a major virulence factor of enterohemorrhagic Escherichia coli. Recently, we found that one of the Stx subtypes, Stx2a, has a unique intracellular transport route after endocytosis through its receptor-binding B-subunit. A part of Stx2a can be transported to late/recycling endosomes and then degraded in a lysosomal acidic compartment, although in general Stx is transported to the Golgi and then to the endoplasmic reticulum in a retrograde manner. In this study, we found that treatment of APP-expressing cells with a mutant Stx2a (mStx2a), lacking cytotoxic activity because of mutations in the catalytic A-subunit, stimulated the transport of APP to the acidic compartment, which led to degradation of APP and a reduction in the amount of Aß. mStx2a-treatment also inhibited the extracellular release of Aß. Therefore, mStx2a may provide a new strategy to inhibit the production of Aß by modulating the intracellular transport of APP.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/efeitos dos fármacos , Endossomos/metabolismo , Lisossomos/metabolismo , Transporte Proteico/efeitos dos fármacos , Toxina Shiga II/farmacologia , Animais , Células CHO , Domínio Catalítico/genética , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Globosídeos/química , Humanos , Mutação , Fosfatidilcolinas/química , Proteínas Recombinantes , Toxina Shiga II/química , Toxina Shiga II/genética , Triexosilceramidas/química
10.
Pharmacogenomics J ; 20(3): 433-442, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31792368

RESUMO

The objective of the study is to develop genetic and clinical prediction models for the efficacy and hepatotoxicity of methotrexate (MTX) in patients with rheumatoid arthritis (RA). Among RA patients treated with MTX, 1966 polymorphisms of 246 enzymes/transporters relevant to pharmacokinetics and pharmacodynamics were measured by the Drug Metabolism Enzymes and Transporters (DMET) microarray and direct sequencing, and clinical variables at baseline were collected. For efficacy, response criteria of the European League Against Rheumatism were used to classify patients as responders or non-responders. Hepatotoxicity was defined as elevations of aspartate aminotransferase or alanine aminotransferase ≥1.5 times the reference range upper limit. Among 166 patients, a genetic prediction model for efficacy using seven polymorphisms showed the area under the receiver operating characteristic curve (AUC) was 0.822, with 74.3% sensitivity and 76.8% specificity. A combined genetic and clinical model indicated the AUC was 0.844, with 81.5% sensitivity and 76.9% specificity. By incorporating clinical variables into the genetic model, the overall category-free net reclassification improvement (NRI) was 0.663 (P < 0.0001) and the overall integrated discrimination improvement (IDI) was 0.083 (P = 0.0009). For hepatotoxicity, a genetic prediction model using seven polymorphisms showed the AUC was 0.783 with 70.0% sensitivity and 80.0% specificity, while the combined model indicated the AUC was 0.906 with 85.1% sensitivity and 87.8% specificity (overall category-free NRI: 1.002, P < 0.0001; overall IDI: 0.254, P < 0.0001). Our genetic and clinical models demonstrated moderate diagnostic accuracy for MTX efficacy and high accuracy for hepatotoxicity. These findings should, however, be validated and interpreted with a caution until external validation.


Assuntos
Antirreumáticos/efeitos adversos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Doença Hepática Induzida por Substâncias e Drogas/genética , Metotrexato/efeitos adversos , Modelos Genéticos , Idoso , Artrite Reumatoide/epidemiologia , Doença Hepática Induzida por Substâncias e Drogas/epidemiologia , Estudos de Coortes , Feminino , Previsões , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
11.
Genes Cells ; 23(1): 22-34, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29205725

RESUMO

Chronic myeloid leukemia (CML) is caused by the chimeric protein p210 BCR-ABL encoded by a gene on the Philadelphia chromosome. Although the kinase domain of p210 BCR-ABL is an active driver of CML, the pathological role of its pleckstrin homology (PH) domain remains unclear. Here, we carried out phospholipid vesicle-binding assays to show that cardiolipin (CL), a characteristic mitochondrial phospholipid, is a unique ligand of the PH domain. Arg726, a basic amino acid in the ligand-binding region, was crucial for ligand recognition. A subset of wild-type p210 BCR-ABL that was transiently expressed in HEK293 cells was dramatically translocated from the cytosol to mitochondria in response to carbonyl cyanide m-chlorophenylhydrazone (CCCP) treatment, which induces mitochondrial depolarization and subsequent externalization of CL to the organelle's outer membrane, whereas an R726A mutant of the protein was not translocated. Furthermore, only wild-type p210 BCR-ABL, but not the R726A mutant, suppressed CCCP-induced mitophagy and subsequently enhanced reactive oxygen species production. Thus, p210 BCR-ABL can change its intracellular localization via interactions between the PH domain and CL to cope with mitochondrial damage. This suggests that p210 BCR-ABL could have beneficial effects for cancer proliferation, providing new insight into the PH domain's contribution to CML pathogenesis.


Assuntos
Cardiolipinas/metabolismo , Proteínas de Fusão bcr-abl/metabolismo , Mitocôndrias/patologia , Mitofagia/efeitos dos fármacos , Domínios de Homologia à Plecstrina , Carbonil Cianeto m-Clorofenil Hidrazona/análogos & derivados , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Citosol/metabolismo , Proteínas de Fusão bcr-abl/química , Proteínas de Fusão bcr-abl/genética , Células HEK293 , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transporte Proteico
12.
Crit Rev Immunol ; 37(1): 59-73, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29431079

RESUMO

The effectiveness of lymphodepletion in antitumor immunity has been well established. Although recent studies have elucidated some of the broad mechanisms underlying the augmentation of antitumor immunity by lymphodepletion, such as increased availability of cytokines due to the elimination of cellular elements and improvement in tumor antigen presentation, the precise mechanisms remain unclear. Previous studies have focused on the enhancement of the functions of transferred antitumor CD8+ T cells after lymphodepletion. In this review, we discuss the important role of other immune cells in the effectiveness of lymphodepletion. Recent studies have demonstrated that lymphodepletion enhances not only transferred tumor-specific CD8+ T cells but also tumor-specific CD4+ T cells and polyclonal naïve T cells. Moreover, recipient immune cells, including CD8+ T cells, regulatory T cells, dendritic cells, and macrophages, are involved in the augmentation of antitumor effects by lymphodepletion. These host cells can survive lymphodepletive therapies and play a role in the development of antitumor immunity after lymphodepletion. Improvements in the understanding of lymphodepletion allow us to design effective cancer immunotherapy.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T Reguladores/imunologia , Animais , Antígenos de Neoplasias/imunologia , Citocinas/imunologia , Humanos , Imunoterapia/métodos
13.
Bioorg Med Chem ; 26(22): 5792-5803, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30420327

RESUMO

Synthetic assembly of sugar moieties and amino acids in order to create "sugar-amino acid hybrid polymers" was accomplished by means of simple radical polymerization of carbohydrate monomers having an amino acid-modified polymerizable aglycon. Amines derived from globotriaoside and lactoside as glycoepitopes were condensed with known carbobenzyloxy derivatives, including Z-Gly, Z-l-Ala and Z-ß-Ala, which had appropriate spacer ability and a chiral center to afford fully protected sugar-amino acid hybrid compounds in good yields. After deprotection followed by acryloylation, the water-soluble glycomonomers were polymerized with or without acrylamide in the presence of a radical initiator in water to give corresponding copolymers and homopolymers, which were shown by SEC analysis to have high molecular weights. Evaluation of the biological activities of the glycopolymers against Shiga toxins (Stxs) was carried out, and the results suggested that glycopolymers having highly clustered globotriaosyl residues had high affinity against Stx2 (KD = 2.7∼4.0 µM) even though other glycopolymers did not show any affinity or showed very weak binding affinity. When Stx1 was used for the same assay, all of the glycopolymers having globotriaosyl residues showed high affinity (KD = 0.30∼1.74 µM). Interestingly, couple of glycopolymers having lactosyl moieties had weaker binding affinity against Stx1. In addition, when cytotoxicity assays were carried out for both Stxs, glycopolymers having highly clustered globotriaosyl residues showed higher affinity than that of the copolymers, and only highly clustered-type glycopolymers displayed neutralization potency against Stx2.


Assuntos
Escherichia coli O157/metabolismo , Polímeros/farmacologia , Toxinas Shiga/antagonistas & inibidores , Aminoácidos/química , Aminoácidos/farmacologia , Amino Açúcares/química , Amino Açúcares/farmacologia , Relação Dose-Resposta a Droga , Escherichia coli O157/química , Lactose/química , Lactose/farmacologia , Estrutura Molecular , Polímeros/síntese química , Polímeros/química , Toxinas Shiga/biossíntese , Relação Estrutura-Atividade , Trissacarídeos/química , Trissacarídeos/farmacologia
14.
Biol Pharm Bull ; 41(9): 1475-1479, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30175782

RESUMO

Shiga toxin (Stx) is a main virulence factor of Enterohemorrhagic Escherichia coli (EHEC) that causes diarrhea and hemorrhagic colitis and occasionally fatal systemic complications. Stx induces rapid apoptotic cell death in some cells, such as human myelogenous leukemia THP-1 cells expressing CD77, a receptor for Stx internalization, and the induction of apoptotic cell death is thought to be crucial for the fatal systemic complications. Therefore, in order to suppress the fatal toxicity, it is important to understand the mechanism how cells can escape from apoptotic cell death in the presence of Stx. In this study, we isolated resistant clones to Stx-induced apoptosis from highly sensitive THP-1 cells by continuous exposure with lethal dose of Stx. All of the ten resistant clones lost the expression of CD77 as a consequence of the reduction in CD77 synthase mRNA expression. These results suggest that downregulation of CD77 or CD77 synthase expression could be a novel approach to suppress the fatal toxicity of Stx in EHEC infected patient.


Assuntos
Galactosiltransferases/genética , Leucemia Mieloide/metabolismo , Toxina Shiga I/farmacologia , Toxina Shiga II/farmacologia , Triexosilceramidas/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Etoposídeo/farmacologia , Humanos , Células THP-1
15.
Bull Tokyo Dent Coll ; 59(1): 27-34, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29563359

RESUMO

Here, we report a case of fatal bleeding in conjunction with mandibular medicationrelated osteonecrosis of the jaw (MRONJ). A 75-year-old Japanese man was referred to our department with osteonecrosis of the jaw due to bisphosphonate (BP) for multiple bone metastases from prostate cancer. Aggressive surgical intervention was ruled out due to a poor prognosis in terms of life expectancy. Death occurred due to hemorrhagic shock resulting from massive oral bleeding caused by necrosis of the mandible. Numerous reports have suggested that jaw necrosis is induced not only by BP, but also RANKL antibody, steroids, and molecularly-targeted agents. This suggests that the number of cases of MRONJ is likely to increase among elderly patients in whom general health is already poor. The American Association of Oral and Maxillofacial Surgery recommends aggressive treatment only in cases of stage 3 disease. Therefore, such a therapeutic strategy may only be available for cases of jaw necrosis in which the general health status of the patient is otherwise good. To prevent a life-threatening outcome in cases of MRONJ, physicians, who are responsible for determining the drug strategy, should cooperate with oral surgeons in determining the best therapeutic strategy.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/complicações , Doenças Mandibulares/induzido quimicamente , Doenças Mandibulares/complicações , Choque Hemorrágico/etiologia , Idoso , Evolução Fatal , Humanos , Masculino
16.
Genes Cells ; 21(8): 901-6, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27302278

RESUMO

Shiga toxin (Stx) is a main virulence factor of Stx-producing Escherichia coli (STEC) that contributes to diarrhea and hemorrhagic colitis and occasionally to fatal systemic complications. Therefore, the development of an antidote to neutralize Stx toxicity is urgently needed. After internalization into cells, Stx is transferred to the Golgi apparatus via a retrograde vesicular transport system. We report here that 2-methylcoprophilinamide (M-COPA), a compound that induces disassembly of the Golgi apparatus by inactivating ADP-ribosylation factor 1 (Arf1), suppresses Stx-induced apoptosis. M-COPA inhibited transport of Stx from the plasma membrane to the Golgi apparatus and suppressed degradation of anti-apoptotic proteins and the activation of caspases. These findings suggest that inhibition of Stx retrograde transport by M-COPA could be a novel approach to suppress Stx toxicity.


Assuntos
Fator 1 de Ribosilação do ADP/genética , Alcenos/farmacologia , Antídotos/farmacologia , Naftóis/administração & dosagem , Piridinas/administração & dosagem , Toxina Shiga/antagonistas & inibidores , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Fator 1 de Ribosilação do ADP/antagonistas & inibidores , Alcenos/química , Antídotos/química , Apoptose/efeitos dos fármacos , Apoptose/genética , Colite/tratamento farmacológico , Colite/microbiologia , Diarreia/tratamento farmacológico , Diarreia/microbiologia , Complexo de Golgi/efeitos dos fármacos , Humanos , Toxina Shiga/toxicidade , Escherichia coli Shiga Toxigênica/patogenicidade
17.
Infect Immun ; 84(9): 2653-61, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27382021

RESUMO

Shiga toxin (Stx), a major virulence factor of enterohemorrhagic Escherichia coli (EHEC), can be classified into two subgroups, Stx1 and Stx2, each consisting of various closely related subtypes. Stx2 subtypes Stx2a and Stx2d are highly virulent and linked with serious human disorders, such as acute encephalopathy and hemolytic-uremic syndrome. Through affinity-based screening of a tetravalent peptide library, we previously developed peptide neutralizers of Stx2a in which the structure was optimized to bind to the B-subunit pentamer. In this study, we identified Stx2d-selective neutralizers by targeting Asn16 of the B subunit, an amino acid unique to Stx2d that plays an essential role in receptor binding. We synthesized a series of tetravalent peptides on a cellulose membrane in which the core structure was exactly the same as that of peptides in the tetravalent library. A total of nine candidate motifs were selected to synthesize tetravalent forms of the peptides by screening two series of the tetravalent peptides. Five of the tetravalent peptides effectively inhibited the cytotoxicity of Stx2a and Stx2d, and notably, two of the peptides selectively inhibited Stx2d. These two tetravalent peptides bound to the Stx2d B subunit with high affinity dependent on Asn16. The mechanism of binding to the Stx2d B subunit differed from that of binding to Stx2a in that the peptides covered a relatively wide region of the receptor-binding surface. Thus, this highly optimized screening technique enables the development of subtype-selective neutralizers, which may lead to more sophisticated treatments of infections by Stx-producing EHEC.


Assuntos
Aminoácidos/metabolismo , Peptídeos/metabolismo , Toxina Shiga II/metabolismo , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Escherichia coli Êntero-Hemorrágica/metabolismo , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Biblioteca de Peptídeos , Ligação Proteica/fisiologia , Células Vero
18.
Eur J Neurosci ; 42(6): 2283-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26108136

RESUMO

The purpose of this study was to investigate the effect of electrical stimulation to the common peroneal nerve (CPN) on the spinal reflex and reciprocal inhibition (RI) during robot-assisted passive ground stepping (PGS) in healthy subjects. Five interventions were applied for 30 min in healthy subjects: PGS alone; strong CPN stimulation [50% of the maximal tibialis anterior (TA) M-wave, functional electrical stimulation (FES)] alone; weak CPN stimulation [just above the MT for the TA muscle, therapeutic electrical stimulation (TES)] alone; PGS with FES; and PGS with TES. FES and TES were applied intermittently to the CPN at 25 Hz. The soleus (Sol) H-reflex and RI, which was assessed by conditioning the Sol H-reflex with CPN stimulation, were investigated before (baseline), and 5, 15 and 30 min after each intervention. The amplitudes of the Sol H-reflex were not significantly different after each intervention as compared with the baseline values. The amounts of RI were significantly decreased 5 min after PGS with FES as compared with the baseline values, whereas they were significantly increased 5 and 15 min after PGS with TES. The other interventions did not affect the amount of RI. These results suggest that interventions that combined PGS with CPN stimulation changed the spinal RI in an intensity-dependent manner.


Assuntos
Estimulação Elétrica/métodos , Reflexo H , Inibição Neural , Nervo Fibular/fisiologia , Robótica/métodos , Caminhada/fisiologia , Adulto , Terapia por Estimulação Elétrica/métodos , Eletromiografia , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia , Adulto Jovem
19.
Appl Environ Microbiol ; 81(3): 1092-100, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25452283

RESUMO

Shiga toxin (Stx), a major virulence factor of enterohemorrhagic Escherichia coli, binds to target cells through a multivalent interaction between its B-subunit pentamer and the cell surface receptor globotriaosylceramide, resulting in a remarkable increase in its binding affinity. This phenomenon is referred to as the "clustering effect." Previously, we developed a multivalent peptide library that can exert the clustering effect and identified Stx neutralizers with tetravalent peptides by screening this library for high-affinity binding to the specific receptor-binding site of the B subunit. However, this technique yielded only a limited number of binding motifs, with some redundancy in amino acid selectivity. In this study, we established a novel technique to synthesize up to 384 divalent peptides whose structures were customized to exert the clustering effect on the B subunit on a single cellulose membrane. By targeting Stx1a, a major Stx subtype, the customized divalent peptides were screened to identify high-affinity binding motifs. The sequences of the peptides were designed based on information obtained from the multivalent peptide library technique. A total of 64 candidate motifs were successfully identified, and 11 of these were selected to synthesize tetravalent forms of the peptides. All of the synthesized tetravalent peptides bound to the B subunit with high affinities and effectively inhibited the cytotoxicity of Stx1a in Vero cells. Thus, the combination of the two techniques results in greatly improved efficiency in identifying biologically active neutralizers of Stx.


Assuntos
Antídotos/isolamento & purificação , Antídotos/metabolismo , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Toxina Shiga/antagonistas & inibidores , Toxina Shiga/metabolismo , Animais , Antídotos/síntese química , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Peptídeos/síntese química , Ligação Proteica , Células Vero
20.
PLoS One ; 19(5): e0302569, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709734

RESUMO

Osteomyelitis of the jaw is a severe inflammatory disorder that affects bones, and it is categorized into two main types: chronic bacterial and nonbacterial osteomyelitis. Although previous studies have investigated the association between these diseases and the oral microbiome, the specific taxa associated with each disease remain unknown. In this study, we conducted shotgun metagenome sequencing (≥10 Gb from ≥66,395,670 reads per sample) of bulk DNA extracted from saliva obtained from patients with chronic bacterial osteomyelitis (N = 5) and chronic nonbacterial osteomyelitis (N = 10). We then compared the taxonomic composition of the metagenome in terms of both taxonomic and sequence abundances with that of healthy controls (N = 5). Taxonomic profiling revealed a statistically significant increase in both the taxonomic and sequence abundance of Mogibacterium in cases of chronic bacterial osteomyelitis; however, such enrichment was not observed in chronic nonbacterial osteomyelitis. We also compared a previously reported core saliva microbiome (59 genera) with our data and found that out of the 74 genera detected in this study, 47 (including Mogibacterium) were not included in the previous meta-analysis. Additionally, we analyzed a core-genome tree of Mogibacterium from chronic bacterial osteomyelitis and healthy control samples along with a reference complete genome and found that Mogibacterium from both groups was indistinguishable at the core-genome and pan-genome levels. Although limited by the small sample size, our study provides novel evidence of a significant increase in Mogibacterium abundance in the chronic bacterial osteomyelitis group. Moreover, our study presents a comparative analysis of the taxonomic and sequence abundances of all genera detected using deep salivary shotgun metagenome data. The distinct enrichment of Mogibacterium suggests its potential as a marker to distinguish between patients with chronic nonbacterial osteomyelitis and chronic bacterial osteomyelitis, particularly at the early stages when differences are unclear.


Assuntos
Metagenômica , Microbiota , Osteomielite , Saliva , Humanos , Saliva/microbiologia , Osteomielite/microbiologia , Feminino , Microbiota/genética , Masculino , Pessoa de Meia-Idade , Metagenômica/métodos , Doença Crônica , Adulto , Metagenoma , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA