Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell ; 164(3): 447-59, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26777403

RESUMO

Plant roots forage the soil for minerals whose concentrations can be orders of magnitude away from those required for plant cell function. Selective uptake in multicellular organisms critically requires epithelia with extracellular diffusion barriers. In plants, such a barrier is provided by the endodermis and its Casparian strips--cell wall impregnations analogous to animal tight and adherens junctions. Interestingly, the endodermis undergoes secondary differentiation, becoming coated with hydrophobic suberin, presumably switching from an actively absorbing to a protective epithelium. Here, we show that suberization responds to a wide range of nutrient stresses, mediated by the stress hormones abscisic acid and ethylene. We reveal a striking ability of the root to not only regulate synthesis of suberin, but also selectively degrade it in response to ethylene. Finally, we demonstrate that changes in suberization constitute physiologically relevant, adaptive responses, pointing to a pivotal role of the endodermal membrane in nutrient homeostasis.


Assuntos
Arabidopsis/fisiologia , Raízes de Plantas/fisiologia , Ácido Abscísico/metabolismo , Arabidopsis/citologia , Diferenciação Celular , Etilenos/metabolismo , Fluoresceínas/análise , Lipídeos/química , Raízes de Plantas/citologia , Transdução de Sinais
2.
Plant Cell ; 33(2): 420-438, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33866370

RESUMO

Plants take up and translocate nutrients through transporters. In Arabidopsis thaliana, the borate exporter BOR1 acts as a key transporter under boron (B) limitation in the soil. Upon sufficient-B supply, BOR1 undergoes ubiquitination and is transported to the vacuole for degradation, to avoid overaccumulation of B. However, the mechanisms underlying B-sensing and ubiquitination of BOR1 are unknown. In this study, we confirmed the lysine-590 residue in the C-terminal cytosolic region of BOR1 as the direct ubiquitination site and showed that BOR1 undergoes K63-linked polyubiquitination. A forward genetic screen identified that amino acid residues located in vicinity of the substrate-binding pocket of BOR1 are essential for the vacuolar sorting. BOR1 variants that lack B-transport activity showed a significant reduction of polyubiquitination and subsequent vacuolar sorting. Coexpression of wild-type (WT) and a transport-defective variant of BOR1 in the same cells showed degradation of the WT but not the variant upon sufficient-B supply. These findings suggest that polyubiquitination of BOR1 relies on its conformational transition during the transport cycle. We propose a model in which BOR1, as a B transceptor, directly senses the B concentration and promotes its own polyubiquitination and vacuolar sorting for quick and precise maintenance of B homeostasis.


Assuntos
Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Boro/farmacologia , Proteólise/efeitos dos fármacos , Ubiquitinação , Sequência de Aminoácidos , Substituição de Aminoácidos , Antiporters/química , Proteínas de Arabidopsis/química , Sítios de Ligação , Testes Genéticos , Proteínas de Fluorescência Verde/metabolismo , Lisina/metabolismo , Modelos Biológicos , Poliubiquitina/metabolismo , Transporte Proteico/efeitos dos fármacos , Prótons , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Ubiquitinação/efeitos dos fármacos , Vacúolos/metabolismo
3.
Biol Cell ; 113(5): 264-269, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33443774

RESUMO

BACKGROUND INFORMATION: Plants use transporters polarly localised in the plasma membrane for the directional transport of nutrients. The boric acid/borate (B) exporter BOR1 is localised polarly in the inner lateral domain of the plasma membrane in various root cells for efficient translocation of B under B limitation. With a high B supply, BOR1 is ubiquitinated and transported to vacuoles for degradation. The polar localisation and vacuolar targeting of BOR1 are maintained by different endocytosis mechanisms. RESULTS: We demonstrated that one of the most utilised inhibitors in endosomal recycling, brefeldin A (BFA), inhibits the polar localisation of BOR1. BFA inhibits a subset of guanine-nucleotide exchange factors (ARF-GEFs), regulators of vesicle formation. Using a transgenic line expressing BFA-resistant engineered GNOM, we identified GNOM as the key ARF-GEF in endocytosis and maintenance of the polar localisation of BOR1. CONCLUSIONS AND SIGNIFICANCE: We found that BFA inhibits the polar localisation of BOR1 by inhibiting GNOM activity. Our results suggest that GNOM-dependent endocytosis contributes to the maintenance of the polar localisation of BOR1 under B limitation. We propose a model of BOR1 transcytosis initiated from GNOM-dependent endocytosis.


Assuntos
Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Brefeldina A/metabolismo , Endocitose , Inibidores da Síntese de Proteínas/metabolismo
4.
Physiol Plant ; 171(4): 703-713, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33090485

RESUMO

BOR1 is an efflux transporter of boron (B), responsible for loading B into the xylem. It has been reported that nitrate (NO3 - ) concentrations significantly influence B concentrations in leaves and BOR1 mRNA accumulation in roots. Here, to unravel the interactive effects of B and NO3 - on plant growth and the function of BOR1 under the combination of B and NO3 - , seedling growth was analyzed in Col-0 and bor1 mutants. The growth of bor1 mutants was negatively affected by high NO3 - but neither by potassium chloride (KCl) nor ammonium (NH4 + ) under low B conditions, suggesting the involvement of BOR1 in growth under high NO3 - . Mutants of bor2 and bor4 did not exhibit such growth responses, suggesting that this effect was specific to BOR1 among the BORs tested. Under low B conditions, loss of the BOR1 function led to a more significant decrease in B concentrations in the presence of high NO3 - compared to normal NO3 - . Additionally, grafting experiments demonstrated that these effects of NO3 - occurred when BOR1 is absent in roots. High NO3 - treatment elevated BOR1 mRNA accumulation while the BOR1 protein accumulation was downregulated. These apparent opposite responses indicated that the transcriptional and (post-)translational regulations follow different patterns. Our work provides evidence of a novel regulation of BOR1 and another B transport system by both B and NO3 - in an interactive manner.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Antiporters , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Boro , Nitratos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
5.
Plant Physiol ; 179(4): 1569-1580, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30710051

RESUMO

Boron (B) is an essential element in plants but is toxic when it accumulates to high levels. In root cells of Arabidopsis (Arabidopsis thaliana), the borate exporter BOR1 is polarly localized in the plasma membrane toward the stele side for directional transport of B. Upon high-B supply, BOR1 is rapidly internalized and degraded in the vacuole. The polar localization and B-induced vacuolar sorting of BOR1 are mediated by endocytosis from the plasma membrane. To dissect the endocytic pathways mediating the polar localization and vacuolar sorting, we investigated the contribution of the clathrin adaptor protein, ADAPTOR PROTEIN2 (AP2) complex, to BOR1 trafficking. In the mutants lacking µ- or σ-subunits of the AP2 complex, the polar localization and constitutive endocytosis of BOR1 under low-B conditions were dramatically disturbed. A coimmunoprecipitation assay showed association of the AP2 complex with BOR1, while it was independent of YxxΦ sorting motifs, which are in a cytosolic loop of BOR1. A yeast two-hybrid assay supported the interaction of the AP2 complex µ-subunit with the C-terminal tail but not with the YxxΦ motifs in the cytosolic loop of BOR1. Intriguingly, lack of the AP2 subunit did not affect the B-induced rapid internalization/vacuolar sorting of BOR1. Consistent with defects in the polar localization, the AP2 complex mutants showed hypersensitivity to B deficiency. Our results indicate that AP2-dependent endocytosis maintains the polar localization of BOR1 to support plant growth under low-B conditions, whereas the B-induced vacuolar sorting of BOR1 is mediated through an AP2-independent endocytic pathway.


Assuntos
Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Boro/metabolismo , Endocitose/fisiologia , Proteínas de Homeodomínio/fisiologia , Proteínas Nucleares/fisiologia , Antiporters/análise , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Polaridade Celular , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transporte Proteico , Técnicas do Sistema de Duplo-Híbrido
6.
Plant Cell ; 29(4): 824-842, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28341806

RESUMO

Boron uptake in Arabidopsis thaliana is mediated by nodulin 26-like intrinsic protein 5;1 (NIP5;1), a boric acid channel that is located preferentially on the soil side of the plasma membrane in root cells. However, the mechanism underlying this polar localization is poorly understood. Here, we show that the polar localization of NIP5;1 in epidermal and endodermal root cells is mediated by the phosphorylation of Thr residues in the conserved TPG (ThrProGly) repeat in the N-terminal region of NIP5;1. Although substitutions of Ala for three Thr residues in the TPG repeat did not affect lateral diffusion in the plasma membrane, these substitutions inhibited endocytosis and strongly compromised the polar localization of GFP-NIP5;1. Consistent with this, the polar localization was compromised in µ subunit mutants of the clathrin adaptor AP2. The Thr-to-Ala substitutions did not affect the boron transport activity of GFP-NIP5;1 in Xenopus laevis oocytes but did inhibit the ability to complement boron translocation to shoots and rescue growth defects in nip5;1-1 mutant plants under boron-limited conditions. These results demonstrate that the polar localization of NIP5;1 is maintained by clathrin-mediated endocytosis, is dependent on phosphorylation in the TPG repeat, and is necessary for the efficient transport of boron in roots.


Assuntos
Aquaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Boro/metabolismo , Endocitose/fisiologia , Raízes de Plantas/metabolismo , Aquaporinas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Transporte Biológico/fisiologia , Membrana Celular/metabolismo , Endocitose/genética
7.
Plant J ; 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29882321

RESUMO

Boron (B) is an essential micronutrient for plants. To maintain B concentration in tissues at appropriate levels, plants use boric acid channels belonging to the NIP subfamily of aquaporins and BOR borate exporters. To regulate B transport, these transporters exhibit different cell-type specific expression, polar localization, and B-dependent post-transcriptional regulation. Here, we describe the development of genetically encoded biosensors for cytosolic boric acid to visualize the spatial distribution and temporal dynamics of B in plant tissues. The biosensors were designed based on the function of the NIP5;1 5'-untranslated region (UTR), which promotes mRNA degradation in response to an elevated cytosolic boric acid concentration. The signal intensities of the biosensor coupled with Venus fluorescent protein and a nuclear localization signal (uNIP5;1-Venus) showed negative correlation with intracellular B concentrations in cultured tobacco BY-2 cells. When expressed in Arabidopsis thaliana, uNIP5;1-Venus enabled the quantification of B distribution in roots at single-cell resolution. In mature roots, cytosolic B levels in stele were maintained under low B supply, while those in epidermal, cortical, and endodermal cells were influenced by external B concentrations. Another biosensor coupled with a luciferase protein fused to a destabilization PEST sequence (uNIP5;1-Luc) was used to visualize changes in cytosolic boric acid concentrations. Thus, uNIP5;1-Venus/Luc enables visualization of B transport in various plant cells/tissues.

8.
Plant Physiol ; 178(3): 1269-1283, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30266747

RESUMO

Boron is an essential plant micronutrient that plays a structural role in the rhamnogalacturonan II component of the pectic cell wall. To prevent boron deficiency under limiting conditions, its uptake, distribution, and homeostasis are mediated by boric acid transporters and channel proteins. Among the membrane channels that facilitate boric acid uptake are the type II nodulin intrinsic protein (NIP) subfamily of aquaporin-like proteins. Arabidopsis (Arabidopsis thaliana) possesses three NIP II genes (NIP5;1, NIP6;1, and NIP7;1) that show distinct tissue expression profiles (predominantly expressed in roots, stem nodes, and developing flowers, respectively). Orthologs of each are represented in all dicots. Here, we show that purified and reconstituted NIP7;1 is a boric acid facilitator. By using native promoter-reporter fusions, we show that NIP7;1 is expressed predominantly in anthers of young flowers in a narrow developmental window, floral stages 9 and 10, with protein accumulation solely within tapetum cells, where it is localized to the plasma membrane. Under limiting boric acid conditions, loss-of-function T-DNA mutants (nip7;1-1 and nip7;1-2) show reduced fertility, including shorter siliques and an increase in aborted seeds, compared with the wild type. Under these conditions, nip7;1 mutant pollen grains show morphological defects, increased aggregation, defective exine cell wall formation, reduced germination frequency, and decreased viability. During stages 9 and 10, the tapetum is essential for supplying materials to the pollen microspore cell wall. We propose that NIP7;1 serves as a gated boric acid channel in developing anthers that aids in the uptake of this critical micronutrient by tapetal cells.


Assuntos
Aquaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ácidos Bóricos/metabolismo , Gametogênese Vegetal/genética , Pólen/genética , Aquaporinas/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico , Boro/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mutação , Filogenia , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão
9.
Plant Physiol ; 177(2): 759-774, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29728453

RESUMO

Boron (B) is an essential element for plants; however, as high B concentrations are toxic, B transport must be tightly regulated. BOR1 is a borate exporter in Arabidopsis (Arabidopsis thaliana) that facilitates B translocation into shoots under B deficiency conditions. When the B supply is sufficient, BOR1 expression is down-regulated by selective degradation of BOR1 protein, while additional BOR1 regulatory mechanisms are proposed to exist. In this study, we identified a novel B-dependent BOR1 translational suppression mechanism. In vivo and in vitro reporter assays demonstrated that BOR1 translation was reduced in a B-dependent manner and that the 5'-untranslated region was both necessary and sufficient for this process. Mutational analysis revealed that multiple upstream open reading frames in the 5'-untranslated region were required for BOR1 translational suppression, and this process depended on the efficiency of translational reinitiation at the BOR1 open reading frame after translation of the upstream open reading frames. To understand the physiological significance of BOR1 regulation, we characterized transgenic plants defective in either one or both of the BOR1 regulation mechanisms. BOR1 translational suppression was induced at higher B concentrations than those triggering BOR1 degradation. Plants lacking both regulation mechanisms exhibited more severe shoot growth reduction under high-B conditions than did plants lacking BOR1 degradation alone, thus demonstrating the importance of BOR1 translational suppression. This study demonstrates that two mechanisms of posttranscriptional BOR1 regulation, each induced under different B concentrations, contribute to the avoidance of B toxicity in plants.


Assuntos
Antiporters/genética , Proteínas de Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Boro/toxicidade , Regiões 5' não Traduzidas , Antiporters/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Boro/administração & dosagem , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fases de Leitura Aberta , Plantas Geneticamente Modificadas , Biossíntese de Proteínas , Proteólise/efeitos dos fármacos
10.
Plant Cell Physiol ; 57(9): 1985-2000, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27449211

RESUMO

Boron (B) is essential for plants but toxic in excess. The borate efflux transporter BOR1 is expressed in various root cells and localized to the inner/stele-side domain of the plasma membrane (PM) under low-B conditions. BOR1 is rapidly degraded through endocytosis upon sufficient B supply. The polar localization and degradation of BOR1 are considered important for efficient B translocation and avoidance of B toxicity, respectively. In this study, we first analyzed the subcellular localization of BOR1 in roots, cotyledons and hypocotyls, and revealed a polar localization in various cell types. We also found that the inner polarity of BOR1 is established after completion of cytokinesis in the root meristem. Moreover, variable-angle epifluorescence microscopy visualized BOR1-green fluorescent protein (GFP) as particles in the PM with significant lateral movements but in restricted areas. Importantly, a portion of BOR1-GFP particles co-localized with DYNAMIN-RELATED PROTEIN 1A (DRP1A), which is involved in scission of the clathrin-coated vesicles, and they disappeared together from the PM. To examine the contribution of DRP1A-mediated endocytosis to BOR1 localization and degradation, we developed an inducible expression system of the DRP1A K47A variant. The DRP1A variant prolonged the residence time of clathrin on the PM and inhibited endocytosis of membrane lipids. The dominant-negative DRP1A blocked endocytosis of BOR1 and disturbed its polar localization and B-induced degradation. Our results provided insight into the endocytic mechanisms that modulate the subcellular localization and abundance of a mineral transporter for nutrient homeostasis in plant cells.


Assuntos
Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Dinaminas/metabolismo , Endocitose/fisiologia , Antiporters/genética , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Boro/metabolismo , Boro/farmacologia , Dinaminas/genética , Endocitose/efeitos dos fármacos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Células Vegetais/metabolismo , Plantas Geneticamente Modificadas , Proteína Vermelha Fluorescente
11.
Plant J ; 78(5): 890-902, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24654769

RESUMO

Boron is an essential micronutrient for higher plants. Boron deficiency is an important agricultural issue because it results in loss of yield quality and/or quantity in cereals and other crops. To understand boron transport mechanisms in cereals, we characterized OsNIP3;1, a member of the major intrinsic protein family in rice (Oryza sativa L.), because OsNIP3;1 is the most similar rice gene to the Arabidopsis thaliana boric acid channel genes AtNIP5;1 and AtNIP6;1. Yeast cells expressing OsNIP3;1 imported more boric acid than control cells. GFP-tagged OsNIP3;1 expressed in tobacco BY2 cells was localized to the plasma membrane. The accumulation of OsNIP3;1 transcript increased fivefold in roots within 6 h of the onset of boron starvation, but not in shoots. Promoter-GUS analysis suggested that OsNIP3;1 is expressed mainly in exodermal cells and steles in roots, as well as in cells around the vascular bundles in leaf sheaths and pericycle cells around the xylem in leaf blades. The growth of OsNIP3;1 RNAi plants was impaired under boron limitation. These results indicate that OsNIP3;1 functions as a boric acid channel, and is required for acclimation to boron limitation. Boron distribution among shoot tissues was altered in OsNIP3;1 knockdown plants, especially under boron-deficient conditions. This result demonstrates that OsNIP3;1 regulates boron distribution among shoot tissues, and that the correct boron distribution is crucial for plant growth.


Assuntos
Boro/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Transporte Biológico , Boro/deficiência , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Oryza/genética , Proteínas de Plantas/genética
12.
Plant Cell Physiol ; 56(5): 852-62, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25619824

RESUMO

Boron (B) is an essential micronutrient for plants but is toxic when accumulated in excess. The plant BOR family encodes plasma membrane-localized borate exporters (BORs) that control translocation and homeostasis of B under a wide range of conditions. In this study, we examined the evolutionary divergence of BORs among terrestrial plants and showed that the lycophyte Selaginella moellendorffii and angiosperms have evolved two types of BOR (clades I and II). Clade I includes AtBOR1 and homologs previously shown to be involved in efficient transport of B under conditions of limited B availability. AtBOR1 shows polar localization in the plasma membrane and high-B-induced vacuolar sorting, important features for efficient B transport under low-B conditions, and rapid down-regulation to avoid B toxicity. Clade II includes AtBOR4 and barley Bot1 involved in B exclusion for high-B tolerance. We showed, using yeast complementation and B transport assays, that three genes in S. moellendorffii, SmBOR1 in clade I and SmBOR3 and SmBOR4 in clade II, encode functional BORs. Furthermore, amino acid sequence alignments identified an acidic di-leucine motif unique in clade I BORs. Mutational analysis of AtBOR1 revealed that the acidic di-leucine motif is required for the polarity and high-B-induced vacuolar sorting of AtBOR1. Our data clearly indicated that the common ancestor of vascular plants had already acquired two types of BOR for low- and high-B tolerance, and that the BOR family evolved to establish B tolerance in each lineage by adapting to their environments.


Assuntos
Aminoácidos/metabolismo , Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Boratos/metabolismo , Boro/metabolismo , Polaridade Celular , Evolução Molecular , Vacúolos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Transporte Biológico , Bryopsida/metabolismo , Clonagem Molecular , Sequência Conservada , DNA Complementar/genética , Dados de Sequência Molecular , Mutação/genética , Filogenia , Selaginellaceae/metabolismo , Alinhamento de Sequência
13.
J Plant Res ; 128(5): 863-73, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26013532

RESUMO

Endomembrane organization is essential for cell physiology. We previously identified an Arabidopsis thaliana mutant in which a plasma membrane (PM) marker GFP-NIP5;1 and trans-Golgi network/early endosome (TGN/EE) markers were accumulated in intracellular aggregates in epidermal cells of the root elongation zone. The mutant was identified as an allele of UDP-glucose epimerase 4 (UGE4)/root hair defective 1/root epidermal bulgar 1, which was previously described as a mutant with swollen root epidermal cells and has an altered sugar composition in cell wall polysaccharides. Importantly, these defects including aggregate formation were restored by supplementation of D-galactose in the medium. These results suggested that UDP-D-galactose synthesis by UGE4 is important for endomembrane organization in addition to cell wall structure. Here, we further investigated the nature of the aggregates using various markers of endomembrane compartments and BOR1-GFP, which traffics from PM to vacuole in response to high-B supply. The markers of multi-vesicular bodies/late endosomes (MVB/LEs) and BOR1-GFP were strongly accumulated in the intracellular aggregates, while those of the endoplasmic reticulum (ER), the vacuolar membrane, and the Golgi were only slightly affected in the uge4 mutant. The abnormal localizations of these markers in the uge4 mutant differed from the effects of inhibitors of actin and microtubule polymerization, although they also affected endomembrane organization. Furthermore, electron microscopy analysis revealed accumulation of abnormal high-electron-density vesicles in elongating epidermal cells. The abnormal vesicles were often associated or interconnected with TGN/EEs and contained ADP-ribosylation factor 1, which is usually localized to the Golgi and the TGN/EEs. On the other hand, structures of the ER, Golgi apparatus, and MVB/LEs were apparently normal in uge4 cells. Together, our data indicate the importance of UDP-D-galactose synthesis by UGE4 for the organization and function of endomembranes, especially TGN/EEs, which are a sorting station of the secretory and vacuolar pathways.


Assuntos
Arabidopsis/genética , UDPglucose 4-Epimerase/genética , Uridina Difosfato Galactose/metabolismo , Arabidopsis/metabolismo , Endossomos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , UDPglucose 4-Epimerase/metabolismo , Rede trans-Golgi/metabolismo
14.
Plant Cell Physiol ; 55(4): 704-14, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24343997

RESUMO

Endomembrane organization is important for various aspects of cell physiology, including membrane protein trafficking. To explore the molecular mechanisms regulating the trafficking of plasma membrane-localized proteins in plants, we screened for Arabidopsis mutants with defective localization of green fluorescent protein (GFP)-nodulin 26-like intrinsic protein (NIP)5;1. Fluorescence imaging-based screening led to the isolation of a mutant which accumulated abnormal intracellular aggregates labeled by GFP-NIP5;1. The aggregates appeared in epidermal cells in the root elongation zone and included the trans-Golgi network/early endosomes. Rough mapping and whole-genome sequencing identified the mutant as an allele of UDP-glucose 4-epimerase 4 (uge4)/root hair defective 1 (rhd1) /root epidermal bulgar 1 (reb 1), which was originally defined as a cell wall mutant. The responsible gene encodes UDP-glucose 4-epimerase 4 (UGE4), which functions in the biosynthesis of d-galactose, especially for the synthesis of the cell wall polysaccharide xyloglucan and arabinogalactan proteins (AGPs). The endomembrane aggregates in the mutants were absent in the presence of d-galactose, indicative of a requirement for a d-galactose-containing component in endomembrane organization. Genetic and pharmacological analyses suggested that the aggregates were not caused by the disruption of cell wall polysaccharides or the cytoskeleton. Overall, our results suggest that UGE4 activity in d-galactose synthesis is required for the structure of cell wall polysaccharides and endomembrane organization.


Assuntos
Aquaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Galactose/farmacologia , Membranas Intracelulares/metabolismo , Mutação/genética , UDPglucose 4-Epimerase/metabolismo , Citoesqueleto de Actina/metabolismo , Alelos , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Arabidopsis/genética , Ácidos Bóricos/metabolismo , Agregação Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Mapeamento Cromossômico , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Etilenos/metabolismo , Genoma de Planta , Glucanos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Membranas Intracelulares/efeitos dos fármacos , Canais Iônicos/metabolismo , Mucoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Polissacarídeos/metabolismo , Transporte Proteico/efeitos dos fármacos , Análise de Sequência de DNA , Xilanos/metabolismo , Rede trans-Golgi/efeitos dos fármacos , Rede trans-Golgi/metabolismo
15.
Plant Physiol ; 163(4): 1699-709, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24114060

RESUMO

Boron (B) is required for cross linking of the pectic polysaccharide rhamnogalacturonan II (RG-II) and is consequently essential for the maintenance of cell wall structure. Arabidopsis (Arabidopsis thaliana) BOR1 is an efflux B transporter for xylem loading of B. Here, we describe the roles of BOR2, the most similar paralog of BOR1. BOR2 encodes an efflux B transporter localized in plasma membrane and is strongly expressed in lateral root caps and epidermis of elongation zones of roots. Transfer DNA insertion of BOR2 reduced root elongation by 68%, whereas the mutation in BOR1 reduced it by 32% under low B availability (0.1 µm), but the reduction in shoot growth was not as obvious as that in the BOR1 mutant. A double mutant of BOR1 and BOR2 exhibited much more severe growth defects in both roots and shoots under B-limited conditions than the corresponding single mutants. All single and double mutants grew normally under B-sufficient conditions. These results suggest that both BOR1 and BOR2 are required under B limitation and that their roles are, at least in part, different. The total B concentrations in roots of BOR2 mutants were not significantly different from those in wild-type plants, but the proportion of cross-linked RG-II was reduced under low B availability. Such a reduction in RG-II cross linking was not evident in roots of the BOR1 mutant. Thus, we propose that under B-limited conditions, transport of boric acid/borate by BOR2 from symplast to apoplast is required for effective cross linking of RG-II in cell wall and root cell elongation.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Boro/farmacologia , Pectinas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Transporte Biológico/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , DNA Bacteriano/genética , Dimerização , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese Insercional/genética , Mutação/genética , Especificidade de Órgãos/efeitos dos fármacos , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
16.
Plant Cell ; 23(9): 3547-59, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21908722

RESUMO

Boron (B) is an essential plant micronutrient that is toxic at higher levels. NIP5;1 is a boric acid channel required for B uptake and growth under B deficiency. Accumulation of the NIP5;1 transcript is upregulated under B deficiency in Arabidopsis thaliana roots. To elucidate the mechanism of regulation, the 5' untranslated region (UTR) of NIP5;1 was tested for its ability to confer B-dependent regulation using ß-glucuronidase and green fluorescent protein as reporters. This analysis showed that the 5' UTR was involved in NIP5;1 transcript accumulation in response to B conditions. We also found that high-B conditions trigger NIP5;1 mRNA degradation and that the sequence from +182 to +200 bp in the 5' UTR is required for this mRNA destabilization. In the nip5;1-1 mutant background, a NIP5;1 complementation construct without the 5' UTR produced high levels of mRNA accumulation, increased B concentrations in tissues, and reduced growth under high-B conditions. These data suggest that the 5' UTR controls B-dependent NIP5;1 mRNA degradation and that NIP5;1 mRNA degradation is important for plant acclimation to high-B conditions.


Assuntos
Aclimatação , Aquaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Boro/farmacologia , Estabilidade de RNA , Regiões 5' não Traduzidas , Aquaporinas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo
17.
J Plant Res ; 127(1): 57-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24338062

RESUMO

After the accident of the Fukushima 1 Nuclear Power Plant in March 2011, radioactive cesium was released and paddy fields in a wide area including Fukushima Prefecture were contaminated. To estimate the levels of radioactive Cs accumulation in rice produced in Fukushima, it is crucial to obtain the actual data of Cs accumulation levels in rice plants grown in the actual paddy field in Fukushima City. We herein conducted a two-year survey in 2011 and 2012 of radioactive and non-radioactive Cs accumulation in rice using a number of rice cultivars grown in the paddy field in Fukushima City. Our study demonstrated a substantial variation in Cs accumulation levels among the cultivars of rice.


Assuntos
Radioisótopos de Césio/metabolismo , Acidente Nuclear de Fukushima , Oryza/metabolismo , Solo/química , Agricultura , Biodegradação Ambiental , Isótopos de Césio/análise , Isótopos de Césio/metabolismo , Radioisótopos de Césio/análise , Japão , Centrais Nucleares , Oryza/química , Caules de Planta/química , Caules de Planta/metabolismo , Monitoramento de Radiação , Poluentes Radioativos do Solo/análise , Poluentes Radioativos do Solo/metabolismo , Especificidade da Espécie
18.
Plant Cell Physiol ; 54(7): 1056-63, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23596187

RESUMO

Boron (B) is an essential micronutrient for plants. Efflux-type B transporters, BORs, have been identified in Arabidopsis thaliana and rice. Here we identified BOR1 genes encoding B efflux transporters, from the hexaploid genome of wheat (Triticum aestivum L.). We cloned three genes closely related to OsBOR1 and named them TaBOR1.1, TaBOR1.2 and TaBOR1.3. All three TaBOR1s showed B efflux activities when expressed in tobacco BY-2 cells. TaBOR1-green fluorescent protein (GFP) fusion proteins were expressed in Arabidopsis leaf cells localized in the plasma membrane. The transcript accumulation patterns of the three genes differ in terms of tissue specificity and B nutrition responses. In roots, transcripts for all three genes accumulated abundantly while in shoots, the TaBOR1.2 transcript is the most abundant, followed by those of TaBOR1.1 and TaBOR1.3. Accumulation of TaBOR1.1 transcript is up-regulated under B deficiency conditions in both roots and shoots. In contrast, TaBOR1.2 transcript accumulation significantly increased in roots under excess B conditions. TaBOR1.3 transcript accumulation was reduced under excess B. Taken together, these results demonstrated that TaBOR1s are the B efflux transporters in wheat and, interestingly, the genes on the A, B and D genomes have different expression patterns.


Assuntos
Boro/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Proteínas de Plantas/genética , Triticum/genética , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Filogenia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Poliploidia , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Triticum/metabolismo
19.
Plant Cell ; 22(4): 1344-57, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20435907

RESUMO

Plants constantly adjust their repertoire of plasma membrane proteins that mediates transduction of environmental and developmental signals as well as transport of ions, nutrients, and hormones. The importance of regulated secretory and endocytic trafficking is becoming increasingly clear; however, our knowledge of the compartments and molecular machinery involved is still fragmentary. We used immunogold electron microscopy and confocal laser scanning microscopy to trace the route of cargo molecules, including the BRASSINOSTEROID INSENSITIVE1 receptor and the REQUIRES HIGH BORON1 boron exporter, throughout the plant endomembrane system. Our results provide evidence that both endocytic and secretory cargo pass through the trans-Golgi network/early endosome (TGN/EE) and demonstrate that cargo in late endosomes/multivesicular bodies is destined for vacuolar degradation. Moreover, using spinning disc microscopy, we show that TGN/EEs move independently and are only transiently associated with an individual Golgi stack.


Assuntos
Arabidopsis/metabolismo , Corpos Multivesiculares/metabolismo , Rede trans-Golgi/metabolismo , Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Endocitose , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Proteínas Quinases/metabolismo , Transporte Proteico
20.
Proc Natl Acad Sci U S A ; 107(11): 5220-5, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20194745

RESUMO

Boron (B) is essential for plant growth but is toxic when present in excess. In the roots of Arabidopsis thaliana under B limitation, a boric acid channel, NIP5;1, and a boric acid/borate exporter, BOR1, are required for efficient B uptake and subsequent translocation into the xylem, respectively. However, under high-B conditions, BOR1 activity is repressed through endocytic degradation, presumably to avoid B toxicity. In this study, we investigated the localization of GFP-tagged NIP5;1 and BOR1 expressed under the control of their native promoters. Under B limitation, GFP-NIP5;1 and BOR1-GFP localized preferentially in outer (distal) and inner (proximal) plasma membrane domains, respectively, of various root cells. The polar localization of the boric acid channel and boric acid/borate exporter indicates the radial transport route of B toward the stele. Furthermore, mutational analysis revealed a requirement of tyrosine residues, in a probable cytoplasmic loop region of BOR1, for polar localization in various cells of the meristem and elongation zone. The same tyrosine residues were also required for vacuolar targeting upon high B supply. The present study of BOR1 and NIP5;1 demonstrates the importance of selective endocytic trafficking in polar localization and degradation of plant nutrient transporters for radial transport and homeostasis of plant mineral nutrients.


Assuntos
Antiporters/metabolismo , Aquaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Boro/metabolismo , Polaridade Celular , Processamento de Proteína Pós-Traducional , Membrana Celular/metabolismo , Difusão , Proteínas de Fluorescência Verde/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Tirosina/metabolismo , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA