Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Biotechnol (Tokyo) ; 33(4): 315-321, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-31274993

RESUMO

The circadian clock plays important roles in the control of photoperiodic flowering in Arabidopsis. Mutations in the LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) genes (lhy;cca1) accelerate flowering under short days, whereas lhy;cca1 delays flowering under continuous light (LL). The lhy;cca1 mutant also exhibits short hypocotyls and petioles under LL. However, the molecular mechanisms underlying the regulation of both flowering time and organ lengths in the LHY/CCA1-dependent pathway are not fully understood. To address these questions, we performed EMS mutagenesis of the lhy-12;cca1-101 line and screened for mutations that enhance the lhy;cca1 phenotypes under LL. In this screen, we identified a novel allele of dwarf4 (dwf4) and named it petanko 5 (pta5). A similar level of enhancement of the delay in flowering was observed in these two dwf4 mutants when combined with the lhy;cca1 mutations. The lhy;cca1 and dwf4 mutations did not significantly affect the expression level of the floral repressor gene FLC under LL. Our results suggest that a defect in brassinosteroid (BR) signaling delayed flowering independent of the FLC expression level, at least in plants with the lhy;cca1 mutation grown under LL. The dwf4/pta5 mutation did not enhance the late-flowering phenotype of plants overexpressing SVP under LL, suggesting that SVP and BR function in a common pathway that controls flowering time. Our results suggest that the lhy;cca1 mutant exhibits delayed flowering due to both the BR signaling-dependent and -independent pathways under LL.

2.
Plant Signal Behav ; 8(4): e23534, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23333981

RESUMO

Shade avoidance response (S.A.R) is regulated by light and circadian clock. Circadian clock controls S.A.R by the transcriptional regulation of positive regulators of S.A.R, PIF4 and PIF5, to prevent plants from responding to 'light' of dark period. Thus, in many cases, deficits in circadian clock appear in abnormalities of hypocotyl and/or petiole elongation. Previously, interesting phenomena were reported that the triple mutants of PSEUDO RESPONSE REGULATORS9, 7 and 5, which are clock components, show longer petioles and smaller leaves under light/dark cycle than those under continuous lighting. These S.A.R-like phenotypes cannot be explained by their hyposensitivity to red light. We demonstrated detailed analyses of this mutant to reveal the leaf-specific S.A.R regulated by circadian clock. Expression analyses of S.A.R-related genes suggested that PRR5 functions as a repressor of S.A.R. Morphological analyses of leaves under different light condition revealed that PRR5 is involved in the inhibition of leaf expansion in S.A.R.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Relógios Circadianos/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Luz , Folhas de Planta/fisiologia , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Mutação , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA