Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 43(10): 1609-1614, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32999172

RESUMO

In the course of our screening program for novel chemotherapeutic candidates from plants against adult T-cell leukemia/lymphoma, the extracts of Asclepias curassavica L. showed potent activity against MT-1 and MT-2 cells. Therefore, we attempted to isolate their active components. We identified a new cardenolide, 19-dihydrocalactinic acid methyl ester (1), along with 16 known cardenolides (2-17). Their structures were determined on the basis of spectroscopic data. Almost all of the isolated cardenolides inhibited the growth of both tumor cell lines. All the doubly linked cardenolides (11-17) except for 14 showed more potent activity than the other cardenolides. A comparison of the activities of 11, 14 and 16 revealed that the presence of hydroxy or acetoxy functional groups at C-16 led to a decrease in the activity. The 50% effective concentration (EC50) value of calotropin (11) against MT-2 cells was comparable to the potency of the clinical antineoplastic drug doxorubicin. The cytotoxic effect of 11 toward normal mononuclear cells obtained from the peripheral blood (PB-MNCs) was observed at a concentration 6 to 12 times higher than that used to induce growth inhibition against MT-1 and MT-2 cells. The proportions of annexin V-positive cells after 72 h of treatment with 11 were increased, indicating that it significantly induced apoptosis in MT-1 and MT-2 cells in a concentration-dependent manner. Cell cycle experiments demonstrated that 11 arrested MT-1 and MT-2 cells at the G2/M phase. Therefore, compound 11 may be a promising candidate for the treatment of adult T-cell leukemia/lymphoma.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Asclepias , Cardenolídeos/farmacologia , Leucemia-Linfoma de Células T do Adulto , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/uso terapêutico , Cardenolídeos/isolamento & purificação , Cardenolídeos/uso terapêutico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Leucemia-Linfoma de Células T do Adulto/patologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico
2.
Semin Radiat Oncol ; 34(3): 262-271, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38880534

RESUMO

Radiotherapy elicits dose- and lineage-dependent effects on immune cell survival, migration, activation, and proliferation in targeted tumor microenvironments. Radiation also stimulates phenotypic changes that modulate the immune susceptibility of tumor cells. This has raised interest in using radiotherapy to promote greater response to immunotherapies. To clarify the potential of such combinations, it is critical to understand how best to administer radiation therapy to achieve activation of desired immunologic mechanisms. In considering the multifaceted process of priming and propagating anti-tumor immune response, radiation dose heterogeneity emerges as a potential means for simultaneously engaging diverse dose-dependent effects in a single tumor environment. Recent work in spatially fractionated external beam radiation therapy demonstrates the expansive immune responses achievable when a range of high to low dose radiation is delivered in a tumor. Brachytherapy and radiopharmaceutical therapies deliver inherently heterogeneous distributions of radiation that may contribute to immunogenicity. This review evaluates the interplay of radiation dose and anti-tumor immune response and explores emerging methodological approaches for investigating the effects of heterogeneous dose distribution on immune responses.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos da radiação , Neoplasias/radioterapia , Neoplasias/imunologia , Dosagem Radioterapêutica , Imunoterapia/métodos , Relação Dose-Resposta à Radiação , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA