RESUMO
An ability to safely harness the powerful regenerative potential of adult stem cells for clinical applications is critically dependent on a comprehensive understanding of the underlying mechanisms regulating their activity. Epithelial organoid cultures accurately recapitulate many features of in vivo stem cell-driven epithelial renewal, providing an excellent ex vivo platform for interrogation of key regulatory mechanisms. Here, we employed a genome-scale clustered, regularly interspaced, short palindromic repeats (CRISPR) knockout (KO) screening assay using mouse gastric epithelial organoids to identify modulators of Wnt-driven stem cell-dependent epithelial renewal in the gastric mucosa. In addition to known Wnt pathway regulators, such as Apc, we found that KO of Alk, Bclaf3, or Prkra supports the Wnt independent self-renewal of gastric epithelial cells ex vivo. In adult mice, expression of these factors is predominantly restricted to non-Lgr5-expressing stem cell zones above the gland base, implicating a critical role for these factors in suppressing self-renewal or promoting differentiation of gastric epithelia. Notably, we found that Alk inhibits Wnt signaling by phosphorylating the tyrosine of Gsk3ß, while Bclaf3 and Prkra suppress regenerating islet-derived (Reg) genes by regulating the expression of epithelial interleukins. Therefore, Alk, Bclaf3, and Prkra may suppress stemness/proliferation and function as novel regulators of gastric epithelial differentiation.
Assuntos
Células-Tronco Adultas/metabolismo , Quinase do Linfoma Anaplásico/genética , Células Epiteliais/metabolismo , Edição de Genes/métodos , Organoides/metabolismo , Proteínas de Ligação a RNA/genética , Via de Sinalização Wnt/genética , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Células-Tronco Adultas/citologia , Quinase do Linfoma Anaplásico/metabolismo , Animais , Sistemas CRISPR-Cas , Proliferação de Células , Células Epiteliais/citologia , Mucosa Gástrica/citologia , Mucosa Gástrica/metabolismo , Regulação da Expressão Gênica , Biblioteca Gênica , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Camundongos , Organoides/citologia , Proteínas de Ligação a RNA/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Estômago/citologiaRESUMO
Bromovalerylurea (BU), an acyl urea derivative, was originally developed as a hypnotic/sedative. We recently reported that BU at a dose of 50 mg/kg ameliorates sepsis, Parkinson's disease, and traumatic brain injury in Wistar rat models through its anti-inflammatory actions on microglia and macrophages. However, since BU was developed more than 100 years ago, its hypnotic mechanism and characteristics are poorly understood. Herein, we conducted an electroencephalogram (EEG) study and found that BU, when administered at a dose of more than 125 mg/kg but not at a dose of 50 mg/kg in Wistar rats, significantly increased non-rapid eye movement (NREM) sleep duration and dose-dependently decreased rapid eye movement (REM) sleep duration. This characteristic of sleep induced by BU is similar to the effect of compounds such as barbiturate, benzodiazepine, and z-drugs, all of which require γ-aminobutyric acid A receptors (GABAAR) for hypnotic/sedative activity. To investigate whether BU could potentiate GABAAergic neurotransmission, we conducted a whole-cell patch-clamp recording from pyramidal neurons in rat cortical slices to detect spontaneous GABAAR-mediated inhibitory postsynaptic currents (IPSCs). We found that BU dose-dependently prolonged IPSCs. Importantly, the prolonged IPSCs were not attenuated by flumazenil, a benzodiazepine receptor antagonist, suggesting that modulation of IPSCs by BU is mediated by different mechanisms from that of benzodiazepine. Taken together, these data elucidate the basic characteristics of the hypnotic effects of BU and suggest that the enhancement of GABAAR-mediated Cl- flux may be a possible mechanism that contributes to its hypnotic/sedative activity.
Assuntos
Bromisoval , Receptores de GABA-A , Ratos , Animais , Receptores de GABA-A/metabolismo , Bromisoval/farmacologia , Ratos Wistar , Hipnóticos e Sedativos/farmacologia , Transmissão Sináptica , Benzodiazepinas/farmacologia , Sono , Ácido gama-Aminobutírico/farmacologiaRESUMO
Loss-of-function mutations in RNF43 induce activation of Wnt ligand-dependent Wnt/ß-catenin signaling through stabilization of the Frizzled receptor, which is often found in microsatellite instability (MSI)-type colorectal cancer (CRC) that develops from sessile serrated adenomas. However, the mechanism underlying how RNF43 mutations promote tumorigenesis remains poorly understood. In this study, we established nine human CRC-derived organoids and found that three organoid lines carried RNF43 frameshift mutations associated with MSI-high and BRAFV600E mutations, suggesting that these CRCs developed through the serrated pathway. RNF43 frameshift mutant organoids required both Wnt ligands and R-spondin for proliferation, indicating that suppression of ZNRF3 and retained RNF43 function by R-spondin are required to achieve an indispensable level of Wnt activation for tumorigenesis. However, active ß-catenin levels in RNF43-mutant organoids were lower than those in APC two-hit mutant CRC, suggesting a lower threshold for Wnt activation in CRC that developed through the serrated pathway. Interestingly, transplantation of RNF43-mutant organoids with intestinal myofibroblasts accelerated the ß-catenin nuclear accumulation and proliferation of xenograft tumors, indicating a key role of stromal cells in the promotion of the malignant phenotype of RNF43-mutant CRC cells. Sequencing of subcloned organoid cell-expressed transcripts revealed that two organoid lines carried monoallelic RNF43 cis-mutations, with two RNF43 frameshift mutations introduced in the same allele and the wild-type RNF43 allele remaining, while the other organoid line carried two-hit biallelic RNF43 trans-mutations. These results suggest that heterozygous RNF43 frameshift mutations contribute to CRC development via the serrated pathway; however, a second-hit RNF43 mutation may be advantageous in tumorigenesis compared with a single-hit mutation through further activation of Wnt signaling. Finally, treatment with the PORCN inhibitor significantly suppressed RNF43-mutant cell-derived PDX tumor development. These results suggest a novel mechanism underlying RNF43 mutation-associated CRC development and the therapeutic potential of Wnt ligand inhibition against RNF43-mutant CRC. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Assuntos
Neoplasias do Colo , Ubiquitina-Proteína Ligases , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias do Colo/genética , Mutação da Fase de Leitura , Humanos , Ligantes , Instabilidade de Microssatélites , Mutação , Trombospondinas/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismoRESUMO
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. Several genome sequencing studies have provided comprehensive CRC genomic datasets. Likewise, in our previous study, we performed genome-wide Sleeping Beauty transposon-based mutagenesis screening in mice and provided comprehensive datasets of candidate CRC driver genes. However, functional validation for most candidate CRC driver genes, which were commonly identified from both human and mice, has not been performed. Here, we describe a platform for functionally validating CRC driver genes that utilizes CRISPR-Cas9 in mouse intestinal tumor organoids and human CRC-derived organoids in xenograft mouse models. We used genetically defined benign tumor-derived organoids carrying 2 frequent gene mutations (Apc and Kras mutations), which act in the early stage of CRC development, so that we could clearly evaluate the tumorigenic ability of the mutation in a single gene. These studies showed that Acvr1b, Acvr2a, and Arid2 could function as tumor suppressor genes (TSGs) in CRC and uncovered a role for Trp53 in tumor metastasis. We also showed that co-occurrent mutations in receptors for activin and transforming growth factor-ß (TGF-ß) synergistically promote tumorigenesis, and shed light on the role of activin receptors in CRC. This experimental system can also be applied to mouse intestinal organoids carrying other sensitizing mutations as well as organoids derived from other organs, which could further contribute to identification of novel cancer driver genes and new drug targets.
Assuntos
Sistemas CRISPR-Cas , Neoplasias Colorretais , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Proteínas de Neoplasias , Organoides , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Organoides/metabolismo , Organoides/patologiaRESUMO
Cancer genome sequencing studies have identified driver genes for a variety of different cancers and helped to understand the genetic landscape of human cancer. It is still challenging, however, to identify cancer driver genes with confidence simply from genetic data alone. In vivo forward genetic screens using Sleeping Beauty (SB) transposon mutagenesis provides another powerful genetic tool for identifying candidate cancer driver genes in wild-type and sensitized mouse tumors. By comparing cancer driver genes identified in human and mouse tumors, cancer driver genes can be identified with additional confidence based upon comparative oncogenomics. This review describes how SB mutagenesis works in mice and focuses on studies that have identified cancer driver genes in the mouse gastrointestinal tract.
Assuntos
Elementos de DNA Transponíveis , Genes Neoplásicos , Neoplasias/genética , Animais , Elementos de DNA Transponíveis/genética , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Gastrointestinais/genética , Genes Neoplásicos/genética , Predisposição Genética para Doença , Testes Genéticos , Humanos , Camundongos , Mutagênese InsercionalRESUMO
Cerebral ischemia/reperfusion injury activates microglia, resident immune cells in the brain, and allows the infiltration of circulating immune cells into the ischemic lesions. Microglia play both exacerbating and protective roles in pathological processes and are thus often referred to as "double-edged swords." In ischemic brains, blood-borne macrophages play a role that is distinct from that of resident activated microglia. Recently, the metabolic alteration of immune cells in the pathogenesis of inflammatory disorders including cerebral infarction has become a critical target for investigation. We begin this review by describing the multifaceted functions of microglia in cerebral infarction. Next, we focus on the metabolic alterations that occur in microglia during pathological processes. We also discuss morphological changes that take place in the mitochondria, leading to functional disturbances, accompanied by alterations in microglial function. Moreover, we describe the involvement of the reactive oxygen species that are produced during aberrant metabolic activity. Finally, we discuss therapeutic strategies to ameliorate aggravative changes in metabolism.
Assuntos
Infarto Cerebral/metabolismo , Infarto Cerebral/patologia , Inflamação/metabolismo , Inflamação/patologia , Microglia/metabolismo , Microglia/patologia , Infarto Cerebral/imunologia , Infarto Cerebral/terapia , Glicólise , Humanos , Inflamação/imunologia , Macrófagos , Microglia/imunologia , Mitocôndrias/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Poor sleep quality and disrupted circadian behavior are a normal part of aging and include excessive daytime sleepiness, increased sleep fragmentation, and decreased total sleep time and sleep quality. Although the neuronal decline underlying the cellular mechanism of poor sleep has been extensively investigated, brain function is not fully dependent on neurons. A recent antemortem autographic study and postmortem RNA sequencing and immunohistochemical studies on aged human brain have investigated the relationship between sleep fragmentation and activation of the innate immune cells of the brain, microglia. In the process of aging, there are marked reductions in the number of brain microglial cells, and the depletion of microglial cells disrupts circadian rhythmicity of brain tissue. We also showed, in a previous study, that pharmacological suppression of microglial function induced sleep abnormalities. However, the mechanism underlying the contribution of microglial cells to sleep homeostasis is only beginning to be understood. This review revisits the impact of aging on the microglial population and activation, as well as microglial contribution to sleep maintenance and response to sleep loss. Most importantly, this review will answer questions such as whether there is any link between senescent microglia and age-related poor quality sleep and how this exacerbates neurodegenerative disease.
Assuntos
Envelhecimento/patologia , Microglia/patologia , Doenças Neurodegenerativas/complicações , Distúrbios do Início e da Manutenção do Sono/patologia , Animais , Humanos , Distúrbios do Início e da Manutenção do Sono/etiologiaRESUMO
Synaptic strength reduces during sleep, but the underlying mechanisms of this process are unclear. This study showed reduction of synaptic proteins in rat prefrontal cortex (PFC) at AM7 or Zeitgeber Time (ZT0), when the light phase or sleeping period for rats started. At this time point, microglia were weakly activated, displaying larger and more granular somata with increased CD11b expression compared with those at ZT12, as revealed by flow cytometry. Expression of opsonins, such as complements or MFG-E8, matrix metalloproteinases, and microglial markers at ZT0 were increased compared with that at ZT12. Microglia at ZT0 phagocytosed synapses, as revealed by immunohistochemical staining. Immunoblotting detected more synapsin I in the isolated microglia at ZT0 than at ZT12. Complement C3- or MFG-E8-bound synapses were the most abundant at ZT0, some of which were phagocytosed by microglia. Systemic administration of synthetic glucocorticoid dexamethasone reduced microglial size, granularity and CD11b expression at ZT0, resembling microglia at ZT12, and increased synaptic proteins and decreased the sleeping period. Noradrenaline (NA) suppressed glutamate-induced phagocytosis in primary cultured microglia. Systemic administration of the brain monoamine-depleting agent reserpine decreased NA content and synapsin I expression in PFC, and increased expression of microglia markers, C3 and MFG-E8, while increasing the sleeping period. A NA precursor l-threo-dihydroxyphenylserine abolished the reserpine-induced changes. These results suggest that microglia may eliminate presumably weak synapses during every sleep phase. The circadian changes in concentrations of circulating glucocorticoids and brain NA might be correlated with the circadian changes of microglial phenotypes and synaptic strength.
Assuntos
Microglia/metabolismo , Fagócitos/metabolismo , Fagocitose/fisiologia , Córtex Pré-Frontal/metabolismo , Fases do Sono/fisiologia , Sinapses/metabolismo , Animais , Células Cultivadas , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Dexametasona/farmacologia , Masculino , Microglia/efeitos dos fármacos , Fagócitos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar , Fases do Sono/efeitos dos fármacos , Sinapses/efeitos dos fármacosRESUMO
Mutations in SMAD4 predispose to the development of gastrointestinal cancer, which is the third leading cause of cancer-related deaths. To identify genes driving gastric cancer (GC) development, we performed a Sleeping Beauty (SB) transposon mutagenesis screen in the stomach of Smad4(+/-) mutant mice. This screen identified 59 candidate GC trunk drivers and a much larger number of candidate GC progression genes. Strikingly, 22 SB-identified trunk drivers are known or candidate cancer genes, whereas four SB-identified trunk drivers, including PTEN, SMAD4, RNF43, and NF1, are known human GC trunk drivers. Similar to human GC, pathway analyses identified WNT, TGF-ß, and PI3K-PTEN signaling, ubiquitin-mediated proteolysis, adherens junctions, and RNA degradation in addition to genes involved in chromatin modification and organization as highly deregulated pathways in GC. Comparative oncogenomic filtering of the complete list of SB-identified genes showed that they are highly enriched for genes mutated in human GC and identified many candidate human GC genes. Finally, by comparing our complete list of SB-identified genes against the list of mutated genes identified in five large-scale human GC sequencing studies, we identified LDL receptor-related protein 1B (LRP1B) as a previously unidentified human candidate GC tumor suppressor gene. In LRP1B, 129 mutations were found in 462 human GC samples sequenced, and LRP1B is one of the top 10 most deleted genes identified in a panel of 3,312 human cancers. SB mutagenesis has, thus, helped to catalog the cooperative molecular mechanisms driving SMAD4-induced GC growth and discover genes with potential clinical importance in human GC.
Assuntos
Elementos de DNA Transponíveis/genética , Mutagênese , Proteína Smad4/genética , Neoplasias Gástricas/genética , Transposases/genética , Junções Aderentes/genética , Animais , Cromatina/metabolismo , Humanos , Camundongos , Camundongos Knockout , Oncogenes , Neoplasias Gástricas/patologiaRESUMO
How the innate and adaptive immune systems cooperate in the natural history of allergic diseases has been largely unknown. Plant-derived allergen, papain, and mite allergens, Der f 1 and Der p 1, belong to the same family of cysteine proteases. We examined the role of protease allergens in the induction of Ab production and airway inflammation after repeated intranasal administration without adjuvants and that in basophil/mast cell stimulation in vitro. Papain induced papain-specific IgE/IgG1 and lung eosinophilia. Der f 1 induced Der f 1-specific IgG1 and eosinophilia. Although papain-, Der f 1-, and Der p 1-stimulated basophils expressed allergy-inducing cytokines, including IL-4 in vitro, basophil-depleting Ab and mast cell deficiency did not suppress the papain-induced in vivo responses. Protease inhibitor-treated allergens and a catalytic site mutant did not induce the responses. These results indicate that protease activity is essential to Ab production and eosinophilia in vivo and basophil activation in vitro. IL-33-deficient mice lacked eosinophilia and had reduced papain-specific IgE/IgG1. Coadministration of OVA with papain induced OVA-specific IgE/IgG1, which was reduced in IL-33-deficient mice. We demonstrated IL-33 release, subsequent IL-33-dependent IL-5/IL-13 release, and activation of T1/ST2-expressing lineage(-)CD25(+)CD44(+) innate lymphoid cells in the lung after papain inhalation, suggesting the contribution of the IL-33-type 2 innate lymphoid cell-IL-5/IL-13 axis to the papain-induced airway eosinophilia. Rag2-deficient mice, which lack adaptive immune cells, showed significant, but less severe, eosinophilia. Collectively, these results suggest cooperation of adaptive immune cells and IL-33-responsive innate cells in protease-dependent allergic airway inflammation.
Assuntos
Imunidade Adaptativa/imunologia , Alérgenos/imunologia , Cisteína Proteases/imunologia , Hipersensibilidade/imunologia , Imunidade Inata/imunologia , Interleucinas/imunologia , Pulmão/imunologia , Animais , Formação de Anticorpos/imunologia , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Basófilos/imunologia , Cisteína Endopeptidases/imunologia , Feminino , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Inflamação/imunologia , Interleucina-13/imunologia , Interleucina-33 , Interleucina-5/imunologia , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Papaína/imunologia , Eosinofilia Pulmonar/imunologiaRESUMO
Neural stem cells (NSCs) are considered to be the cell of origin of glioblastoma multiforme (GBM). However, the genetic alterations that transform NSCs into glioma-initiating cells remain elusive. Using a unique transposon mutagenesis strategy that mutagenizes NSCs in culture, followed by additional rounds of mutagenesis to generate tumors in vivo, we have identified genes and signaling pathways that can transform NSCs into glioma-initiating cells. Mobilization of Sleeping Beauty transposons in NSCs induced the immortalization of astroglial-like cells, which were then able to generate tumors with characteristics of the mesenchymal subtype of GBM on transplantation, consistent with a potential astroglial origin for mesenchymal GBM. Sequence analysis of transposon insertion sites from tumors and immortalized cells identified more than 200 frequently mutated genes, including human GBM-associated genes, such as Met and Nf1, and made it possible to discriminate between genes that function during astroglial immortalization vs. later stages of tumor development. We also functionally validated five GBM candidate genes using a previously undescribed high-throughput method. Finally, we show that even clonally related tumors derived from the same immortalized line have acquired distinct combinations of genetic alterations during tumor development, suggesting that tumor formation in this model system involves competition among genetically variant cells, which is similar to the Darwinian evolutionary processes now thought to generate many human cancers. This mutagenesis strategy is faster and simpler than conventional transposon screens and can potentially be applied to any tissue stem/progenitor cells that can be grown and differentiated in vitro.
Assuntos
Neoplasias Encefálicas/patologia , Elementos de DNA Transponíveis , Glioblastoma/patologia , Mutagênese , Células-Tronco Neurais/citologia , Animais , Transformação Celular Neoplásica , Humanos , CamundongosRESUMO
PURPOSE: The purpose of this study is to identify the clinical, genomic, and transcriptomic features of patients with lung adenocarcinoma (LUAD) harboring uncommon epidermal growth factor receptor (EGFR) mutations (UCM) compared with common EGFR mutations (CM). MATERIALS AND METHODS: In this multicenter retrospective cohort study, clinicopathological data were collected from 1047 consecutive patients who underwent complete surgical resection for LUAD, as well as EGFR mutation analysis, between 2005 and 2012 at 4 institutions. Differences in postoperative overall survival (OS) and recurrence-free survival (RFS) according to EGFR mutation status were evaluated. For the genomic and transcriptomic analyses, 5 cohorts from public databases were evaluated. RESULTS: Of 466 eligible patients, 415 (89.1%) and 51 (10.9%) had CM and UCM, respectively. The 5-year OS and RFS rates in the CM/UCM groups were 86.8%/77.0% and 74.8%/59.0%, respectively. OS and RFS were significantly shorter in the UCM than CM group (both P < .01). Multivariable analysis of OS showed that UCM was an independent prognostic factor (hazard ratio 1.72, 95% confidential interval 1.01-2.93). According to the genomic analysis, tumors with UCM had a significantly higher tumor mutation burden and TP53 mutation frequency. Transcriptomic analysis showed that the T-cell-inflamed gene signature, a biomarker of the treatment for immunotherapy, was significantly associated with tumors with UCM. CONCLUSION: UCM were associated with a poor prognosis in patients with surgically resected EGFR-mutated LUAD. Tumors with UCM had unique genomic and transcriptomic features suggestive of a tumor microenvironment responsive to immunotherapy.
Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Adenocarcinoma/patologia , Estudos Retrospectivos , Prognóstico , Mutação/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/cirurgia , Receptores ErbB/genética , Perfilação da Expressão Gênica , Microambiente TumoralRESUMO
To identify genes important for colorectal cancer (CRC) development and metastasis, we established a new metastatic mouse organoid model using Sleeping Beauty (SB) transposon mutagenesis. Intestinal organoids derived from mice carrying actively mobilizing SB transposons, an activating KrasG12D, and an inactivating ApcΔ716 allele, were transplanted to immunodeficient mice. While 66.7% of mice developed primary tumors, 7.6% also developed metastatic tumors. Analysis of SB insertion sites in tumors identified numerous candidate cancer genes (CCGs) identified previously in intestinal SB screens performed in vivo, in addition to new CCGs, such as Slit2 and Atxn1. Metastatic tumors from the same mouse were clonally related to each other and to primary tumors, as evidenced by the transposon insertion site. To provide functional validation, we knocked out Slit2, Atxn1, and Cdkn2a in mouse tumor organoids and transplanted to mice. Tumor development was promoted when these gene were knocked out, demonstrating that these are potent tumor suppressors. Cdkn2a knockout cells also metastasized to the liver in 100% of the mice, demonstrating that Cdkn2a loss confers metastatic ability. Our organoid model thus provides a new approach that can be used to understand the evolutionary forces driving CRC metastasis and a rich resource to uncover CCGs promoting CRC.
Assuntos
Elementos de DNA Transponíveis , Neoplasias , Camundongos , Animais , Elementos de DNA Transponíveis/genética , Neoplasias/genética , Mutagênese , Fígado , OrganoidesRESUMO
Oxygen is critical for all metazoan organisms on the earth and impacts various biological processes in physiological and pathological conditions. While oxygen-sensing systems inducing acute hypoxic responses, including the hypoxia-inducible factor pathway, have been identified, those operating in prolonged hypoxia remain to be elucidated. Here we show that pyridoxine 5'-phosphate oxidase (PNPO), which catalyses bioactivation of vitamin B6, serves as an oxygen sensor and regulates lysosomal activity in macrophages. Decreased PNPO activity under prolonged hypoxia reduced an active form of vitamin B6, pyridoxal 5'-phosphate (PLP), and inhibited lysosomal acidification, which in macrophages led to iron dysregulation, TET2 protein loss and delayed resolution of the inflammatory response. Among PLP-dependent metabolism, supersulfide synthesis was suppressed in prolonged hypoxia, resulting in the lysosomal inhibition and consequent proinflammatory phenotypes of macrophages. The PNPO-PLP axis creates a distinct layer of oxygen sensing that gradually shuts down PLP-dependent metabolism in response to prolonged oxygen deprivation.
Assuntos
Lisossomos , Macrófagos , Fosfato de Piridoxal , Lisossomos/metabolismo , Macrófagos/metabolismo , Animais , Camundongos , Fosfato de Piridoxal/metabolismo , Hipóxia/metabolismo , Hipóxia Celular , Vitamina B 6/metabolismo , Oxigênio/metabolismo , Inflamação/metabolismoRESUMO
The RNA-binding protein Musashi1 (Msi1) is one of two mammalian homologues of Drosophila Musashi, which is required for the asymmetric cell division of sensory organ precursor cells. In the mouse central nervous system (CNS), Msi1 is preferentially expressed in mitotically active progenitor cells in the ventricular zone (VZ) of the neural tube during embryonic development and in the subventricular zone (SVZ) of the postnatal brain. Previous studies showed that cells in the SVZ can contribute to long-term neurogenesis in the olfactory bulb (OB), but it remains unclear whether Msi1-expressing cells have self-renewing potential and can contribute to neurogenesis in the adult. Here, we describe the generation of Msi1-CreER(T2) knock-in mice and show by cell lineage tracing that Msi1-CreER(T2) -expressing cells mark neural stem cells (NSCs) in both the embryonic and adult brain. Msi1-CreER(T2) mice thus represent a new tool in our arsenal for genetically manipulating NSCs, which will be essential for understanding the molecular mechanisms underlying neural development.
Assuntos
Encéfalo/embriologia , Encéfalo/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/fisiologia , Proteínas de Ligação a RNA/genética , Animais , Linhagem da Célula/genética , Camundongos , Mutagênese , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Tamoxifeno/farmacologiaRESUMO
The excessive inflammatory response of macrophages plays a vital role in the pathogenesis of various diseases. The dynamic metabolic alterations in macrophages, including amino acid metabolism, are known to orchestrate their inflammatory phenotype. To explore a new metabolic pathway that regulates the inflammatory response, we examined metabolome changes in mouse peritoneal macrophages (PMs) in response to lipopolysaccharide (LPS) and found a coordinated increase of cysteine and its related metabolites, suggesting an enhanced demand for cysteine during the inflammatory response. Because Slc7a11, which encodes a cystine transporter xCT, was remarkably upregulated upon the pro-inflammatory challenge and found to serve as a major channel of cysteine supply, we examined the inflammatory behavior of Slc7a11 knockout PMs (xCT-KO PMs) to clarify an impact of the increased cysteine demand on inflammation. The xCT-KO PMs exhibited a prolonged upregulation of pro-inflammatory genes, which was recapitulated by cystine depletion in the culture media of wild-type PMs, suggesting that cysteine facilitates the resolution of inflammation. Detailed analysis of the sulfur metabolome revealed that supersulfides, such as cysteine persulfide, were increased in PMs in response to LPS, which was abolished in xCT-KO PMs. Supplementation of N-acetylcysteine tetrasulfide (NAC-S2), a supersulfide donor, attenuated the pro-inflammatory gene expression in xCT-KO PMs. Thus, activated macrophages increase cystine uptake via xCT and produce supersulfides, creating a negative feedback loop to limit excessive inflammation. Our study highlights the finely tuned regulation of macrophage inflammatory response by sulfur metabolism.
Assuntos
Cistina , Lipopolissacarídeos , Camundongos , Animais , Retroalimentação , Macrófagos/metabolismo , Acetilcisteína , Enxofre/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismoRESUMO
Precise analysis of tissue DNA and RNA samples is often hampered by contaminating non-target cells whose amounts are highly variable. DNA methylation profiles are specific to cell types, and can be utilized for assessment of the fraction of such contaminating non-target cells. Here, we aimed 1) to identify methylation profiles specific to multiple types of mouse leukocytes, and 2) to estimate the fraction of leukocytes infiltrating inflamed tissues using DNA samples. First, genome-wide DNA methylation analysis was conducted for three myeloid-lineage cells and four lymphoid-lineage cells isolated by fluorescence-activated cell sorting after magnetic-activated cell sorting from leukocytes in the spleen. Clustering analysis using CpG sites within enhancers separated the three myeloid-lineage cells and four lymphoid-lineage cells while that using promoter CpG islands (TSS200CGIs) did not. Among the 266,108 CpG sites analyzed, one CpG site was specifically hypermethylated (ß value ≥ 0.7) in B cells, and four, seven, 183, and 34 CpG sites were specifically hypomethylated (ß value < 0.2) in CD4+ T cells, CD8+ T cells, B cells, and NK cells, respectively. Importantly, cell type-specific hypomethylated CpG sites were located at genes involved in cell type-specific biological functions. Then, marker CpG sites to estimate the leukocyte fraction in a tissue with leukocyte infiltration were selected, and an estimation algorithm was established. The fractions of infiltrating leukocytes were estimated to be 1.6-12.4% in the stomach (n = 10) with Helicobacter pylori-induced inflammation and 1.5-4.3% in the colon with dextran sulfate sodium-induced colitis (n = 4), and the fractions were highly correlated with those estimated histologically using Cd45-stained tissue sections [R = 0.811 (p = 0.004)]. These results showed that mouse methylation profiles at CpG sites within enhancers reflected leukocyte cell lineages, and the use of marker CpG sites successfully estimated the leukocyte fraction in inflamed gastric and colon tissues.
Assuntos
Metilação de DNA , Leucócitos , Animais , Camundongos , Leucócitos/metabolismo , DNA/metabolismo , Estômago , Ilhas de CpG/genéticaRESUMO
The Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 (KEAP1-NRF2) system plays a central role in redox homeostasis and inflammation control. Oxidative stress or electrophilic compounds promote NRF2 stabilization and transcriptional activity by negatively regulating its inhibitor, KEAP1. We have previously reported that bromovalerylurea (BU), originally developed as a hypnotic, exerts anti-inflammatory effects in various inflammatory disease models. However, the molecular mechanism underlying its effect remains uncertain. Herein, we found that by real-time multicolor luciferase assay using stable luciferase red3 (SLR3) and green-emitting emerald luciferase (ELuc), BU potentiates NRF2-dependent transcription in the human hepatoblastoma cell line HepG2 cells, which lasted for more than 60 h. Further analysis revealed that BU promotes NRF2 accumulation and the transcription of its downstream cytoprotective genes in the HepG2 and the murine microglial cell line BV2. Keap1 knockdown did not further enhance NRF2 activity, suggesting that BU upregulates NRF2 by targeting KEAP1. Knockdown of Nfe2l2 in BV2 cells diminished the suppressive effects of BU on the production of pro-inflammatory mediators, like nitric oxide (NO) and its synthase NOS2, indicating the involvement of NRF2 in the anti-inflammatory effects of BU. These data collectively suggest that BU could be repurposed as a novel NRF2 activator to control inflammation and oxidative stress.
Assuntos
Bromisoval , Fator 2 Relacionado a NF-E2 , Humanos , Camundongos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Bromisoval/farmacologia , Hipnóticos e Sedativos/farmacologia , Estresse Oxidativo , Oxirredução , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológicoRESUMO
Chronic inflammation promotes development and progression of colorectal cancer (CRC). To comprehensively understand the molecular mechanisms underlying the development and progression of inflamed CRC, we perform in vivo screening and identify 142 genes that are frequently mutated in inflammation-associated colon tumors. These genes include senescence and TGFß-activin signaling genes. We find that TNFα can induce stemness and activate senescence signaling by enhancing cell plasticity in colonic epithelial cells, which could act as a selective pressure to mutate senescence-related genes in inflammation-associated colonic tumors. Furthermore, we show the efficacy of the Cdk4/6 inhibitor in vivo for inflammation-associated colonic tumors. Finally, we functionally validate that Arhgap5 and Mecom are tumor suppressor genes, providing possible therapeutic targets for CRC. Thus, we demonstrate the importance of the inactivation of senescence pathways in CRC development and progression in an inflammatory microenvironment, which can help progress toward precision medicine.
Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/genética , Neoplasias do Colo/genética , Mutagênese , Inflamação/genética , Transdução de Sinais , Microambiente TumoralRESUMO
Nuclear factor erythroid-derived 2-like 2 (NRF2) is a master transcription factor that coordinately regulates the expression of many cytoprotective genes and plays a central role in defense mechanisms against oxidative and electrophilic insults. Although increased NRF2 activity is principally beneficial for our health, NRF2 activation in cancer cells is detrimental. Many human cancers exhibit persistent NRF2 activation and such cancer cells rely on NRF2 for most of their malignant characteristics, such as therapeutic resistance and aggressive tumourigenesis, and thus fall into NRF2 addiction. The persistent activation of NRF2 confers great advantages on cancer cells, whereas it is not tolerated by normal cells, suggesting that certain requirements are necessary for a cell to exploit NRF2 and evolve into malignant cancer cells. In this review, recent reports and data on the genetic, metabolic and immunological features of NRF2-activated cancer cells are summarized, and prerequisites for NRF2 addiction in cancer cells and their therapeutic applications are discussed.