Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Toxicol Pathol ; 36(1): 31-43, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36683727

RESUMO

Our previous 4-week repeated dose toxicity study showed that wood preservative chromated copper arsenate (CCA) induced hepatocellular hypertrophy accompanied by biochemical hepatic dysfunction and an increase in oxidative stress marker, 8-hydroxydeoxyguanosine, in female rats. To further explore the molecular mechanisms of CCA hepatotoxicity, we analyzed 10%-buffered formalin-fixed liver samples from female rats for cell proliferation, apoptosis, and protein glutathionylation and conducted microarray analysis on frozen liver samples from female rats treated with 0 or 80 mg/kg/day of CCA. Chemical analysis revealed that dimethylated arsenical was the major metabolite in liver tissues of male and female rats. CCA increase labeling indices of proliferating cell nuclear antigen and decrease terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling accompanied with increased expression of protein glutathionylation, indicating a decrease in glutathione (GSH) in hepatocytes of female rats. Microarray analysis revealed that CCA altered gene expression of antioxidants, glutathione-S-transferase (GST), heat shock proteins and ubiquitin-proteasome pathway, cell proliferation, apoptosis, DNA methylation, cytochrome P450, and glucose and lipid metabolism in female rats. Increased expression of GSTs, including Gsta2, Gsta3, Mgst1, and Cdkn1b (p27), and decreased expression of the antioxidant Mt1, and DNA methylation Dnmt1, Dnmt3a, and Ctcf were confirmed in the liver of female rats in a dose-dependent manner. Methylation status of the promoter region of the Mt1 was not evidently changed between control and treatment groups. The results suggested that CCA decreased GSH and altered the expression of several genes, including antioxidants, GST, and DNA methylation, followed by impaired cell proliferation in the liver of female rats.

2.
J Pineal Res ; 71(2): e12751, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34091948

RESUMO

Melatonin (MEL) orchestrates daily and seasonal rhythms (eg, locomotion, sleep/wake cycles, and migration among other rhythms) in diverse organisms. We investigated the effects of pharmacological doses (0.03-1 mM) of exogenous MEL intake in the cockroach, Periplaneta americana, on locomotor activity. As per os MEL concentration increased, cockroach locomotor rhythm in light-dark (LD) cycles became more synchronized. The ratio of night activity to 24-h activity increased and the acrophase (peak) slightly advanced. MEL application also influenced total activity bouts in the free-running rhythm. Since MEL slightly influenced τ in the free-running rhythms, it is not a central element of the circadian pacemaker but must influence mutual coupling of multi-oscillatory system components. Arylalkylamine N-acetyltransferase (aaNAT) regulates enzymatic production of MEL. aaNAT activities vary in circadian rhythms, and the immunoreactive aaNAT (aaNAT-ir) is colocalized with the key clock proteins cycle (CYC)-ir and pigment-dispersing factor (PDF)-ir These are elements of the central pacemaker and its output pathway as well as other circadian landmarks such as the anterior and posterior optic commissures (AOC and POC, respectively). It also partially shares immunohistochemical reactivity with PER-ir and DBT-ir neurons. We analyzed the role of Pamericana aaNAT1 (PaaaNAT1) (AB106562.1) by injecting dsRNAaaNAT1 . qPCR showed a decrease in accumulations of mRNAs encoding PaaaNAT1. The injections led to arrhythmicity in LD cycles and the arrhythmicity persisted in constant dark (DD). Continuous administration of MEL resynchronized the rhythm after arrhythmicity was induced by dsRNAaaNAT1 injection, suggesting that PaaaNAT is the key regulator of the circadian system in the cockroach via MEL production. PaaaNAT1 contains putative E-box regions which may explain its tight circadian control. The receptor that mediates MEL function is most likely similar to the mammalian MT2, because injecting the competitive MT2 antagonist luzindole blocked MEL function, and MEL injection after luzindole treatment restored MT function. Human MT2-ir was localized in the circadian neurons in the cockroach brain and subesophageal ganglion. We infer that MEL and its synthesizing enzyme, aaNAT, constitute at least one circadian output pathway of locomotor activity either as a distinct route or in association with PDF system.


Assuntos
Melatonina , Periplaneta , Animais , Arilalquilamina N-Acetiltransferase , Ritmo Circadiano/fisiologia , Humanos , Locomoção , Melatonina/metabolismo , Periplaneta/metabolismo
3.
J Neurochem ; 155(5): 508-521, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32895930

RESUMO

The primary structure of the second transmembrane (M2) segment of resistant to dieldrin (RDL), an ionotropic γ-aminobutyric acid receptor (GABAR) subunit, and the structure-function relationships in RDL are well conserved among insect species. An amino acid substitution at the 2' position in the M2 segment (Ala to Ser or Gly) confers resistance to non-competitive antagonists (NCAs) of GABARs. Here, a cDNA encoding RDL was cloned from the two-spotted spider mite Tetranychus urticae Koch. Unlike insect homologs, native TuRDL has His at the 2' position (H305) and Ile at 6' (I309) in the M2 segment and is insensitive to NCAs. Single and multiple mutations were introduced in the M2 segment of TuRDL, and the mutant proteins were expressed in Xenopus oocytes and examined for the restoration of sensitivity to NCAs. The sensitivity of a double mutant (H305A and I309T in the M2 segment) was greatly increased but was still considerably lower than that of insect RDLs. We therefore constructed chimeric RDLs consisting of TuRDL and Drosophila melanogaster RDL and examined their sensitivities to NCAs. The results show that the N-terminal region containing the Cys-loop as well as the M2 segment confers functional specificity; thus, our current understanding of the mechanism underlying NCA binding to GABARs requires reappraisal.


Assuntos
Canais de Cloreto/genética , Proteínas de Drosophila/química , Receptores de GABA-A/química , Tetranychidae/genética , Ácido gama-Aminobutírico/farmacologia , Sequência de Aminoácidos , Animais , Afídeos , Brassica , Canais de Cloreto/metabolismo , Relação Dose-Resposta a Droga , Proteínas de Drosophila/genética , Drosophila melanogaster , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Feminino , Masculino , Phaseolus , Estrutura Secundária de Proteína , Receptores de GABA-A/genética , Tetranychidae/efeitos dos fármacos , Xenopus laevis , Ácido gama-Aminobutírico/metabolismo
4.
Toxicol Pathol ; 46(3): 312-323, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29587599

RESUMO

Chromated copper arsenate (CCA) is used as a wood preservative worldwide. Exposure to it may adversely affect human health. Some events have increased human exposure to CCA, including the Great East Japan Earthquake, which generated a large amount of lumber debris from CCA-treated woods. We elucidated the toxicity due to daily exposure to CCA over a 4-week period at doses of 0, 8, 40, and 80 mg/kg/day in Wistar Hannover rats. Chromium (Cr) and arsenic (As), but not copper, were detected in the plasma samples of rats treated with various doses of CCA. Males and females showed sedation, and males had poor body weight gain. The clinical pathologies observed in both sexes included hypochromic and microcytic anemia, hepatic and renal dysfunction, and changes in lipid and glucose levels. Histopathologically, males and females showed forestomach hyperkeratosis, mucosal epithelial hyperplasia in the small intestine, rectal goblet cell hypertrophy, and lipofuscin deposition in the proximal renal tubule. Females showed diffuse hepatocellular hypertrophy with increased 8-hydroxydeoxyguanosine levels. These results indicated that oral administration of CCA mainly affected hematopoietic, gastrointestinal, hepatic, and renal systems owing to the toxic effects of As and/or Cr. Major toxic effects were observed in both sexes receiving 40 and 80 mg/kg/day.


Assuntos
Arseniatos/toxicidade , Administração Oral , Animais , Arseniatos/administração & dosagem , Feminino , Masculino , Ratos , Ratos Wistar
5.
Naturwissenschaften ; 104(9-10): 70, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28791459

RESUMO

In temperate climates, the initiation and termination of diapause synchronize the stress-tolerant stage with the stressful season and reproduction with the non-stressful season in many insects. Synchronization is often regulated by photoperiodism.Voltinism and the ultimate size of adults are also important determinants for their lifecycle, and different diapause stages and voltinism patterns are known in crickets.Here, we investigated the life history of the African cricket Gryllus argenteus from Malawi, which is a typical arid tropical highland. The climate is characterized by alternating arid and wet seasons, each of which lasts for half a year, and where the available heat mass is much less than lowlands at the same latitude. We first measured the nymphal duration at each rearing temperature and calculated the lower developmental threshold (t 0) to be 20.19 °C based on Ikemoto and Takai (2000) and 19.38 °C based on a conventional line-fitting method. These values are very high relative to many other insects. The local temperature in winter does not fall below 15 °C, but this is much higher than the lethal limit. This suggested that critical stress in this locality was not coldness but low precipitation in winter. We estimated, based both on local temperature change and the Ikemoto and Takai's t 0, that G. argenteus required 3 years to complete its lifecycle unlike wet lowland species, where univoltinism or multi-voltinism are commonplace. Photoperiodism was observed in this species, but due to a lag between annual cycles in photoperiod, temperature, and humidity, photoperiodism alone cannot atune their lifecycle with local conditions.Synchronization in this species was achieved by three different adaptations: photoperiodism, high t 0, and large body size, which give it a long lifecycle. Although the species cannot achieve a univoltine lifecycle because of its high t0 value, it can escape from dry season by entering diapause at moderate temperatures, probably thereby achieving adaptive synchrony of lifecycle with both favorable and unfavorable seasons. A comparison between a conventional photothermogram and a newly formulated photohydrogram or photohygrogram demonstrates that even though sufficient heat is available, scarcity of water and thus scarcity of foliage should force the cricket to maintain diapause at intermediate temperature. The results suggested that high t 0, large body size, and multi-ennial lifecycle mutually affect each other and formulate a unique adaptation under such an extreme environment.


Assuntos
Gryllidae , Aclimatação , Animais , Dessecação , Malaui , Fotoperíodo , Temperatura
6.
Artigo em Inglês | MEDLINE | ID: mdl-28707374

RESUMO

Rab proteins are small monomeric GTPases/GTP-binding proteins, which form the largest branch of the Ras superfamily. The different Rab GTPases are localized to the cytosolic face of specific intracellular membranes, where they function as regulators of distinct steps in membrane trafficking. RabX4 is an insect-specific Rab protein that has no close homolog in vertebrates. There is little information about insect-specific Rab proteins. RabX4 was expressed in Escherichia coli and subsequently purified. Antibodies against Bombyx mori RabX4 were produced in rabbits for western immunoblotting and immunohistochemistry. Western blotting of neural tissues revealed a single band, at approximately 26 kD. RabX4-like immunohistochemical reactivity was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum in the brain. Further immunohistochemical analysis revealed that RabX4 colocalized with Rab6 and bombyxin in the corpus allatum, a neuronal organ that secretes neuropeptides synthesized in the brain into the hemolymph. RabX4 expression in the frontal ganglion, part of the insect stomatogastric nervous system that is found in most insect orders, was restricted to two neurons on the outer region and did not colocalize with allatotropin or Rab6. Furthermore, RNA interference of RabX4 decreased bombyxin expression levels in the brain. These findings suggest that RabX4 is involved in the neurosecretion of a secretory organ in Bombyx mori.


Assuntos
Bombyx/metabolismo , Corpora Allata/metabolismo , Proteínas de Insetos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Encéfalo/metabolismo , Gânglios dos Invertebrados/metabolismo , Hormônios de Inseto/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Interferência de RNA
7.
Histochem Cell Biol ; 146(1): 59-69, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26976000

RESUMO

In eukaryotic cells, Rab guanosine triphosphate-ases serve as key regulators of membrane-trafficking events, such as exocytosis and endocytosis. Rab3, Rab6, and Rab27 control the regulatory secretory pathway of neuropeptides and neurotransmitters. The cDNAs of Rab3, Rab6, and Rab27 from B. mori were inserted into a plasmid, transformed into Escherichia coli, and then subsequently purified. We then produced antibodies against Rab3, Rab6, and Rab27 of Bombyx mori in rabbits and rats for use in western immunoblotting and immunohistochemistry. Western immunoblotting of brain tissue revealed a single band at approximately 26 kDa. Immunohistochemistry results revealed that Rab3, Rab6, and Rab27 expression was restricted to neurons in the pars intercerebralis and dorsolateral protocerebrum of the brain. Rab3 and Rab6 co-localized with bombyxin, an insect neuropeptide. However, there was no Rab that co-localized with prothoracicotropic hormone. The corpus allatum secretes neuropeptides synthesized in the brain into the hemolymph. Results showed that Rab3 and Rab6 co-localized with bombyxin in the corpus allatum. These findings suggest that Rab3 and Rab6 are involved in neurosecretion in B. mori. This study is the first to report a possible relationship between Rab and neurosecretion in the insect corpus allatum.


Assuntos
Bombyx/química , Encéfalo/imunologia , Corpora Allata/química , Corpora Allata/imunologia , Proteínas rab de Ligação ao GTP/análise , Animais , Anticorpos/imunologia , Bombyx/imunologia , Imuno-Histoquímica , Coelhos , Ratos , Proteínas rab de Ligação ao GTP/imunologia
8.
Cell Tissue Res ; 362(3): 481-96, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26178071

RESUMO

Immunohistochemical reactivities against short neuropeptide F (sNPF-ir) and crustacean cardioactive peptide (CCAP-ir) were detected in both the brain-subesophageal ganglion (Br-SOG) and midgut epithelial cells of the male American cockroach, Periplaneta americana. Four weeks of starvation increased the number of sNPF-ir cells and decreased the CCAP-ir cells in the Br-SOG, whereas refeeding reversed these effects. The contents of sNPF in the Br-SOG, midgut and hemolymph titer decreased in response to an injection of CCAP into the hemocoel of normally fed male cockroaches, while CCAP titers/contents decreased in response to an injection of sNPF. The results of a double-labeling experiment demonstrated that sNPF-ir co-existed in CCAP-ir cells in the pars intercerebralis (PI), dorsolateral region of protocerebrum (DL), deutocerebrum (De) and SOG. sNPF-ir and CCAP-ir were also colocalized in the midgut. sNPF and CCAP are neuropeptides and midgut factors that interact with each other. Since the two peptides are known to be secreted by identical cells that affect each other, this constitutes autocrine negative feedback regulation for a quick response to food accessibility/inaccessibility. These peptides not only constitute the switch in the digestive mechanism but also couple digestive adaptation with behavior. A CCAP injection suppressed locomotor activity when cockroaches were starved, whereas sNPF activated it when they were fed.


Assuntos
Comunicação Autócrina , Encéfalo/metabolismo , Baratas/metabolismo , Sistema Digestório/metabolismo , Retroalimentação Fisiológica , Metaboloma , Neuropeptídeos/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Esôfago/metabolismo , Comportamento Alimentar , Gânglios dos Invertebrados/metabolismo , Masculino , Atividade Motora , Inanição
9.
Int J Mol Sci ; 16(8): 19326-46, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26287180

RESUMO

A state of the art proteomic methodology using Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI TOF) has been employed to characterize peptides modulated in the date palm stem subsequent to infestation with red palm weevil (RPW). Our analyses revealed 32 differentially expressed peptides associated with RPW infestation in date palm stem. To identify RPW infestation associated peptides (I), artificially wounded plants (W) were used as additional control beside uninfested plants, a conventional control (C). A constant unique pattern of differential expression in infested (I), wounded (W) stem samples compared to control (C) was observed. The upregulated proteins showed relative fold intensity in order of I > W and downregulated spots trend as W > I, a quite interesting pattern. This study also reveals that artificially wounding of date palm stem affects almost the same proteins as infestation; however, relative intensity is quite lower than in infested samples both in up and downregulated spots. All 32 differentially expressed spots were subjected to MALDI-TOF analysis for their identification and we were able to match 21 proteins in the already existing databases. Relatively significant modulated expression pattern of a number of peptides in infested plants predicts the possibility of developing a quick and reliable molecular methodology for detecting plants infested with date palm.


Assuntos
Peptídeos/metabolismo , Phoeniceae/metabolismo , Phoeniceae/parasitologia , Proteínas de Plantas/metabolismo , Gorgulhos/fisiologia , Animais , Eletroforese em Gel Bidimensional , Interações Hospedeiro-Parasita , Peptídeos/análise , Doenças das Plantas/parasitologia , Proteínas de Plantas/análise , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
Histochem Cell Biol ; 141(3): 311-20, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24190830

RESUMO

Rab guanosine triphosphatases in eukaryotic cells are key regulators of membrane-trafficking events, such as exocytosis and endocytosis. Rab7 regulates traffic from early to late endosomes and from late endosomes to vacuoles/lysosomes. The Rab7-interacting lysosomal protein (RILP) was extracted from the silkworm, Bombyx mori (B. mori), and expressed in Escherichia coli (E. coli), followed by its purification. The glutathione sulfotransferase pull-down assay revealed that Rab7 of B. mori interacted with RILP of B. mori. We then produced antibodies against RILP of B. mori in rabbits for their use in Western immunoblotting and immunohistochemistry. Western immunoblotting of brain tissue for RILP revealed a single band, at approximately 50 kD. RILP-like immunohistochemical reactivity (RILP-ir) was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum. Furthermore, RILP-ir was colocalized with the eclosion hormone-ir and bombyxin-ir. However, RILP-ir was not colocalized with prothoracicotropic hormone-ir. These results were similar to those of Rab7 from our previous study. These findings suggest that RILP and Rab7 are involved in the neurosecretion in a restricted subtype of neurons in B. mori. Thus, our study is the first to report of a possible relationship between an insect Rab effector and neurosecretion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Bombyx/embriologia , Proteínas/genética , Proteínas/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Bombyx/genética , Cérebro/metabolismo , Escherichia coli/genética , Feminino , Hormônios de Inseto , Larva , Masculino , Ovário/metabolismo , Testículo/metabolismo , Proteínas rab de Ligação ao GTP/biossíntese , proteínas de unión al GTP Rab7
11.
Cell Tissue Res ; 356(2): 405-16, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24696316

RESUMO

Starvation, in particular amino acid deprivation, induces autophagy in trophocytes (adipocytes), the major component of the fat body cell types, in the larvae of Drosophila melanogaster. However, the fat body of cockroach has two additional cell types: urocytes depositing uric acid in urate vacuoles as a nitrogen resource and mycetocytes harboring an endosymbiont, Blattabacterium cuenoti, which can synthesize amino acids from the metabolites of the stored uric acid. These cells might complement the roles of autophagy in recycling amino acids in the fat body or other organs of cockroaches under starvation. We investigate the presence of autophagy in tissues such as the fat body and midgut of the American cockroach, Periplaneta americana, under starvation by immunoblotting with antibody against Atg8, a ubiquitin-like protein required for the formation of autophagosomes and by electron microscopy. Corresponding changes in acid phosphatase activity were also investigated as representing lysosome activity. Starvation increased the level of an autophagic marker, Atg8-II, in both the tissues, extensively stimulating the formation of autophagic compartments in trophocytes of the fat body and columnar cells of the midgut for over 2 weeks. Acid phosphatase showed no significant increase in the fat body of the starved cockroaches but was higher in the midgut of the continuously fed animals. Thus, a distinct autophagic mechanism operates in these tissues under starvation of 2 weeks and longer. The late induction of autophagy implies exhaustion of the stored uric acid in the fat body. High activity of acid phosphatase in the midgut of the fed cockroaches might represent enhanced assimilation and not an autophagy-related function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia/fisiologia , Corpo Adiposo/metabolismo , Periplaneta/metabolismo , Inanição , Fosfatase Ácida/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Adipócitos , Sequência de Aminoácidos , Aminoácidos/biossíntese , Aminoácidos/metabolismo , Animais , Sequência de Bases , Clonagem Molecular , Lisossomos/enzimologia , Proteínas dos Microfilamentos/biossíntese , Proteínas dos Microfilamentos/genética , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Alinhamento de Sequência , Ácido Úrico/metabolismo
12.
Histochem Cell Biol ; 139(2): 299-308, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22922733

RESUMO

Rab proteins are small GTPases that play essential roles in vesicle transport. In this study, we examined the expression of Rab proteins and neuropeptide hormones in the brain of the silkworm, Bombyx mori. We produced antibodies against B. mori Rab1 and Rab14 in rabbits. Immunoblotting of samples of brain tissue from B. mori revealed a single band for each antibody. Rab1 and Rab14 immunohistochemical labeling in the brain of B. mori was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum. Rab1, Rab7 and Rab14 co-localized with bombyxin. Rab1 and Rab7 co-localized with eclosion hormone. Rab1 co-localized with prothoracicotropic hormone. These results suggest that Rab1, Rab7 and Rab14 may be involved in neuropeptide transport in the brain of B. mori. This is the first report on the specificity of Rab proteins for the secretion of different neuropeptides in insects.


Assuntos
Bombyx/metabolismo , Encéfalo/metabolismo , Hormônios de Inseto/biossíntese , Proteínas rab de Ligação ao GTP/biossíntese , Animais , Bombyx/enzimologia , Encéfalo/enzimologia , Imuno-Histoquímica , Hormônios de Inseto/análise , Proteínas rab de Ligação ao GTP/análise , Proteínas rab de Ligação ao GTP/isolamento & purificação
13.
J Exp Biol ; 216(Pt 6): 977-83, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23197101

RESUMO

Non-diapausing spider mites (Tetranychus urticae) live on the undersurface of host leaves during summer, but diapausing mites overwinter in dark hibernacula. The light environments of these habitats differ: visible radiation (VIS) but not ultraviolet radiation (UV) reaches the undersurface of leaves, but neither enters dark hibernacula. Thus, mites of either seasonal form could locate their preferred habitat by photo-orientation responses to UV and VIS. To investigate this possibility, we analysed the mites' locomotion behaviour on a virtual field with a programmed chequered pattern of light and dark patches in a micro-locomotion compensator. Both non-diapausing and diapausing mites moved away from UV-illuminated patches into dark patches. Non-diapausing mites moved towards VIS-illuminated patches, whereas diapausing mites did not show a preference. Our results show that non-diapausing mites avoid UV and are attracted to VIS, suggesting that this can guide them beneath a leaf. Diapausing mites simply avoid UV. The lack of a preference for VIS during diapause could be due to changes in carotenoid metabolism, which also involve orange pigmentation of diapausing mites. We consider that a diapause-mediated switch of the response to VIS, together with regular avoidance of UV, plays a key role in the seasonal change of habitat selection in this species. This seasonal polyphenism involves alterations in not only reproductive state and pigmentation, but also in photo-spectral responses.


Assuntos
Comportamento Animal/fisiologia , Ecossistema , Luz , Orientação/fisiologia , Estações do Ano , Tetranychidae/fisiologia , Animais , Comportamento Animal/efeitos da radiação , Japão , Atividade Motora/fisiologia , Raios Ultravioleta
14.
Insect Mol Biol ; 21(2): 247-56, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22229544

RESUMO

The cDNA encoding caspase-1, a main protease involved in apoptosis, was cloned and sequenced from the midgut of the greater wax moth, Galleria mellonella. The open reading frame contains 879 nucleotides, encodes 293 amino acids, and was registered as Gmcaspase-1. The sequence comparison showed a high homology to lepidopteran caspase-1, human caspase-3, and ced-3 of Caenorhabditis elegans. Gmcaspase-1 is predicted to contain a short prodomain, large subunit, and small subunit domain. It also exhibits all characteristics of caspase, including three conserved cleavage sites after Asp-25, Asp-192, and Asp-181, three active site residues including a highly conserved QACQG pentapeptide active-site motif, and four substrate binding sites. The expression profiles during development showed that the transcript of Gmcaspase-1 and its protein products appeared in two or more waves in the midgut during metamorphosis. Immunohistochemistry, in situ hybridization, and TUNEL analyses revealed that apoptosis occurred first at the basal, then middle and then apical regions in the midgut epithelium and the yellow body is formed in the lumen. At least three waves of mitosis and differentiation follow the apoptosis waves from the basal and middle to apical parts to form the adult epithelium.


Assuntos
Caspase 1/metabolismo , Proteínas de Insetos/metabolismo , Metamorfose Biológica , Mariposas/enzimologia , Sequência de Aminoácidos , Animais , Caspase 1/genética , Morte Celular , Diferenciação Celular , Proliferação de Células , Trato Gastrointestinal/citologia , Trato Gastrointestinal/enzimologia , Amplificação de Genes , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Dados de Sequência Molecular , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Família Multigênica , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
15.
Front Physiol ; 13: 867621, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812309

RESUMO

The photoperiodic system is concealed in the highly complex black-box, comprising four functional subunits: 1) a photo/thermo-sensitive input unit, 2) a photoperiodic clock based on a circadian system, 3) a condenser unit counting the number of inductive signals, and 4) a neuroendocrine switch that triggers a phenotypic shift. This review aims to summarize the research history and current reach of our understanding on this subject to connect it with the molecular mechanism of the circadian clock rapidly being unveiled. The review also focuses on the mode of intersubunit information transduction. It will scan the recent advancement in research on each functional subunit, but special attention will be given to the circadian clock-endocrine conjunct and the role of melatonin signaling in the regulation of insect photoperiodism. Prothoracicotropic hormone (PTTH) probably plays the most crucial role in the regulation of pupal diapause, which is the simplest model system of diapause regulation by hormones investigated so far, particularly in the Chinese oak silkmoth (Antheraea pernyi). A search for the trigger to release the PTTH found some candidates, that is, indoleamines. Indolamine metabolism is controlled by arylalkylamine N-acetyltransferase (aaNAT). Indolamine dynamics and aaNAT enzymatic activity changed according to photoperiods. aaNAT activity and melatonin content in the brain showed not only a photoperiodic response but also a circadian fluctuation. aaNAT had multiple E-boxes, suggesting that it is a clock-controlled gene (ccg), which implies that cycle (cyc, or brain-muscle Arnt-like 1 = Bmal1)/Clock (Clk) heterodimer binds to E-box and stimulates the transcription of aaNAT, which causes the synthesis of melatonin. RNAi against transcription modulators, cyc, or Clk downregulated aaNAT transcription, while RNAi against repressor of cyc/Clk, per upregulated aaNAT transcription. Immunohistochemical localization showed that the circadian neurons carry epitopes of melatonin-producing elements such as aaNAT, the precursor serotonin, HIOMT, and melatonin as well as clock gene products such as cyc-ir, Per-ir, and dbt-ir, while PTTH-producing neurons juxtaposed against the clock neurons showed hMT2-ir in A. pernyi brain. Melatonin probably binds to the putative melatonin receptor (MT) that stimulates Ca2+ influx, which in turn activates PKC. This induces Rab 8 phosphorylation and exocytosis of PTTH, leading to termination of diapause. All the PTTH-expressing neurons have PKC-ir, and Rab8-ir. When diapause is induced and maintained under short days, serotonin binding to 5HTR1B suppresses PTTH release in a yet unknown way. RNAi against this receptor knocked out photoperiodism; short day response is blocked and diapause was terminated even under the short day condition. The result showed that a relatively simple system controls both induction and termination in pupal diapause of A. pernyi: the circadian system regulates the transcription of aaNAT as a binary switch, the enzyme produces a melatonin rhythm that gates PTTH release, and 5HTR1B and MT are probably also under photoperiodic regulation. Finally, we listed the remaining riddles which need to be resolved, to fully understand this highly complex system in future studies.

16.
Inhal Toxicol ; 23(8): 476-85, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21689009

RESUMO

Didecyldimethylammonium chloride (DDAC), a representative dialkyl-quaternary ammonium compound (QAC), could contaminate working atmospheres when used in disinfectant operation and adversely affect human health. Furthermore, the development of bacteria resistant to DDAC might become public health concern. We postulated that DDAC instillation in the lungs alters pulmonary antioxidant and antimicrobial responses and increases susceptibility to systemic administration of a bacterial component lipopolysaccharide (LPS). Mice were intratracheally instilled with DDAC and sacrificed 1, 3, or 7 days after treatment. Pulmonary cytotoxicity in recovered bronchoalveolar lavage was evident on Days 1 and 7, and inflammatory cell influx and interleukin-6 expression peaked on Day 7, in association with altered antioxidant and antimicrobial responses, as demonstrated by measuring heme oxygenase-1, glutathione peroxidase 2, lactoferrin, and mouse ß-defensin-2 and -3 mRNA in the lung samples. The impaired defense system tended to enhance the inflammatory reaction caused by a systemic administration of LPS; the effect was in association with increased expression of toll-like receptor-4 mRNA. The results suggest that DDAC alters pulmonary defense system, which may contribute to susceptibility to an exogenous infectious agent.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Poluentes Ocupacionais do Ar/toxicidade , Imunidade Inata/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Compostos de Amônio Quaternário/toxicidade , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Imunidade Inata/genética , Interleucina-6/metabolismo , Intubação Intratraqueal , Lactoferrina/genética , Lactoferrina/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , beta-Defensinas/genética , beta-Defensinas/metabolismo
17.
Front Physiol ; 12: 723072, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526913

RESUMO

Vitellogenins (Vgs) are yolk protein precursors that are regulated by juvenile hormone (JH) and/or 20-hydroxyecdysone (20E) in insects. JH acts as the principal gonadotropin that stimulates vitellogenesis in hemimetabolous insects. In this study, we cloned and characterized the Periplaneta americana Vitellogenin 2 (Vg2) promoter. Multiple sites for putative transcription factor binding were predicted for the 1,804 bp Vg2 promoter region, such as the Broad-Complex, ecdysone response element (EcRE), GATA, Hairy, JH response element (JHRE), and Methoprene (Met)-binding motif, among others. Luciferase reporter assay has identified that construct -177 bp is enough to support JH III induction but not 20E suppression. This 38 bp region (from -177 to -139 bp) contains two conserved response element half-sites separated by 2 nucleotides spacer (DR2) and is designated as Vg2RE (-168GAGTCACGGAGTCGCCGCTG-149). Mutation assay and luciferase assay data using mutated constructs verified the crucial role of G residues in Vg2RE for binding the isolated fat body nuclear protein. In Sf9 cells, a luciferase reporter placed under the control of a minimal promoter containing Vg2RE was induced by JH III in a dose- and time-dependent manner. Nuclear proteins isolated from previtellogenic female fat body cells bound to Vg2RE, and this binding was outcompeted by a 50-fold excess of cold Drosophila melanogaster DR4 and Galleria mellonella JH binding protein response elements (Chorion factor-I/Ultraspiracle). Affinity pull-down experiment with nuclear extracts of previtellogenic female fat body, using 31-bp probe Vg2RE as bait, yielded a 71 kDa candidate nuclear protein that may mediate the regulatory action of the JH III.

18.
Commun Biol ; 4(1): 286, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674721

RESUMO

Voracious feeding, trans-continental migration and insecticide resistance make Spodoptera litura among the most difficult Asian agricultural pests to control. Larvae exhibit strong circadian behavior, feeding actively at night and hiding in soil during daytime. The daily pattern of larval metabolism was reversed, with higher transcription levels of genes for digestion (amylase, protease, lipase) and detoxification (CYP450s, GSTs, COEs) in daytime than at night. To investigate the control of these processes, we annotated nine essential clock genes and analyzed their transcription patterns, followed by functional analysis of their coupling using siRNA knockdown of interlocked negative feedback system core and repressor genes (SlituClk, SlituBmal1 and SlituCwo). Based on phase relationships and overexpression in cultured cells the controlling mechanism seems to involve direct coupling of the circadian processes to E-boxes in responding promoters. Additional manipulations involving exposure to the neonicotinoid imidacloprid suggested that insecticide application must be based on chronotoxicological considerations for optimal effectiveness.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Ritmo Circadiano , Comportamento Alimentar , Proteínas de Insetos/metabolismo , Spodoptera/metabolismo , Animais , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Inativação Metabólica , Proteínas de Insetos/genética , Inseticidas/farmacologia , Larva/genética , Larva/metabolismo , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Interferência de RNA , RNA-Seq , Spodoptera/efeitos dos fármacos , Spodoptera/embriologia , Spodoptera/genética , Fatores de Tempo , Transcriptoma
19.
Genome Biol Evol ; 13(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34554226

RESUMO

Species of infraorder Gryllidea, or crickets, are useful invertebrate models for studying developmental biology and neuroscience. They have also attracted attention as alternative protein sources for human food and animal feed. Mitochondrial genomic information on related invertebrates, such as katydids, and locusts, has recently become available in attempt to clarify the controversial classification schemes, although robust phylogenetic relationships with emphasis on crickets remain elusive. Here, we report newly sequenced complete mitochondrial genomes of crickets to study their phylogeny, genomic rearrangements, and adaptive evolution. First, we conducted de novo assembly of mitochondrial genomes from eight cricket species and annotated protein-coding genes and transfer and ribosomal RNAs using automatic annotations and manual curation. Next, by combining newly described protein-coding genes with public data of the complete Gryllidea genomes and gene annotations, we performed phylogenetic analysis and found gene order rearrangements in several branches. We further analyzed genetic signatures of selection in ant-loving crickets (Myrmecophilidae), which are small wingless crickets that inhabit ant nests. Three distinct approaches revealed two positively selected sites in the cox1 gene in these crickets. Protein 3D structural analyses suggested that these selected sites could influence the interaction of respiratory complex proteins, conferring benefits to ant-loving crickets with a unique ecological niche and morphology. These findings enhance our understanding of the genetic basis of cricket evolution without relying on estimates based on a limited number of molecular markers.


Assuntos
Formigas , Genoma Mitocondrial , Gryllidae , Animais , Formigas/genética , Evolução Molecular , Gryllidae/genética , Insetos/genética , Filogenia
20.
Histochem Cell Biol ; 134(6): 615-22, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21069376

RESUMO

Small GTPases of the Rab family are key regulators of membrane trafficking. We produced antibodies against the Rab7 protein of Bombyx mori (BRab7) in rabbits, and against the Rab11 protein of B. mori (BRab11) in mice. The antibodies recognized BRab7 and BRab11 proteins, but did not recognize other Rab proteins. Immunoblotting of samples from brain tissue of B. mori revealed a single band for each antibody. Rab11 was expressed in most tissues, whereas Rab7 was expressed in the brain, ovary, and testis. Immunohistochemical reactivity of Rab7 and Rab11 in the brain of B. mori was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum. Double-labeling experiments demonstrated that immunohistochemical reactivity of Rab7 co-localized with that of Rab11 and partially with that of Rab8. Immunohistochemical reactivity of Rab11 and Rab8 co-localized with that of PERIOD, one of the proteins associated with circadian rhythm. These findings suggest that Rab7, Rab8, and Rab11 are involved in protein transport in the neurons of the brain of B. mori and might play a role in the control of circadian rhythm.


Assuntos
Encéfalo/enzimologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Bombyx , Ritmo Circadiano/fisiologia , Imuno-Histoquímica , Camundongos , Proteínas Circadianas Period/metabolismo , Coelhos , Proteínas rab de Ligação ao GTP/imunologia , proteínas de unión al GTP Rab7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA