Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proteomics ; 24(3-4): e2200431, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37548120

RESUMO

Middle-down proteomics (MDP) is an analytical approach in which protein samples are digested with proteases such as Glu-C to generate large peptides (>3 kDa) that are analyzed by mass spectrometry (MS). This method is useful for characterizing high-molecular-weight proteins that are difficult to detect by top-down proteomics (TDP), in which intact proteins are analyzed by MS. In this study, we applied GeLC-FAIMS-MS, a multidimensional separation workflow that combines gel-based prefractionation with LC-FAIMS MS, for deep MDP. Middle-down peptides generated by optimized limited Glu-C digestion conditions were first size-fractionated by polyacrylamide gel electrophoresis, followed by C4 reversed-phase liquid chromatography separation and additional ion mobility fractionation, resulting in a significant increase in peptide length detectable by MS. In addition to global analysis, the GeLC-FAIMS-MS concept can also be applied to targeted MDP, where only proteins in the desired molecular weight range are gel-fractionated and their Glu-C digestion products are analyzed, as demonstrated by targeted analysis of integrins in exosomes. In-depth MDP achieved by global and targeted GeLC-FAIMS-MS supports the exploration of proteoform information not covered by conventional TDP by increasing the number of detectable protein groups or post-translational modifications (PTMs) and improving the sequence coverage.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Proteômica/métodos , Fluxo de Trabalho , Peptídeos/análise , Proteínas de Ligação a DNA
2.
Anal Chem ; 94(37): 12815-12821, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36069571

RESUMO

The combination of liquid chromatography (LC) and gas-phase separation by field-asymmetric ion mobility spectrometry (FAIMS) is a powerful proteoform separation system for top-down proteomics. Here, we present an in-depth top-down proteomics workflow, GeLC-FAIMS-MS, in which a molecular-weight-based proteome fractionation approach using SDS-polyacrylamide gel electrophoresis is performed prior to LC-FAIMS-MS. Since individual bands and their corresponding mass ranges require different compensating voltages (CVs), the MS parameters for each gel band and CV were optimized to increase the number and reliability of proteoform identifications further. We developed an easy-to-implement and inexpensive procedure combining the earlier established Passively Eluting Proteins from Polyacrylamide gels as Intact species (PEPPI) protocol with an optimized Anion-Exchange disk-assisted Sequential sample Preparation (AnExSP) method for the removal of stains and SDS. The protocol was compared with a methanol-chloroform-water (MCW)-based protein precipitation protocol. The results show that the PEPPI-AnExSP procedure is better suited for the identification of low-molecular-weight proteoforms, whereas the MCW-based protocol showed advantages for higher-molecular-weight proteoforms. Moreover, complementary results were observed with the two methods in terms of hydrophobicity and isoelectric points of the identified proteoforms. In total, 8500 proteoforms could be identified in a human proteome standard, showing the effectiveness of the gel-based sample fractionation approaches in combination with LC-FAIMS-MS.


Assuntos
Proteoma , Proteômica , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Humanos , Espectrometria de Mobilidade Iônica , Proteoma/análise , Proteômica/métodos , Reprodutibilidade dos Testes
3.
BMC Biol ; 19(1): 195, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496840

RESUMO

BACKGROUND: QconCATs are quantitative concatamers for proteomic applications that yield stoichiometric quantities of sets of stable isotope-labelled internal standards. However, changing a QconCAT design, for example, to replace poorly performing peptide standards has been a protracted process. RESULTS: We report a new approach to the assembly and construction of QconCATs, based on synthetic biology precepts of biobricks, making use of loop assembly to construct larger entities from individual biobricks. The basic building block (a Qbrick) is a segment of DNA that encodes two or more quantification peptides for a single protein, readily held in a repository as a library resource. These Qbricks are then assembled in a one tube ligation reaction that enforces the order of assembly, to yield short QconCATs that are useable for small quantification products. However, the DNA context of the short construct also allows a second cycle of loop assembly such that five different short QconCATs can be assembled into a longer QconCAT in a second, single tube ligation. From a library of Qbricks, a bespoke QconCAT can be assembled quickly and efficiently in a form suitable for expression and labelling in vivo or in vitro. CONCLUSIONS: We refer to this approach as the ALACAT strategy as it permits à la carte design of quantification standards. ALACAT methodology is a major gain in flexibility of QconCAT implementation as it supports rapid editing and improvement of QconCATs and permits, for example, substitution of one peptide by another.


Assuntos
Proteínas , Proteômica , Biblioteca Gênica , Técnicas Genéticas , Peptídeos , Proteínas/análise
4.
J Proteome Res ; 20(3): 1535-1543, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33356312

RESUMO

The GeLC-MS workflow, which combines low-cost, easy-to-use sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (SDS-PAGE) with liquid chromatography-mass spectrometry (LC-MS), is very popular in current bottom-up proteomics. However, GeLC-MS requires that PAGE-separated proteins undergo overnight enzymatic digestion in a gel, resulting in more than 20 h of sample preparation for LC-MS. In this study, we overcame the limitations of GeLC-MS by developing a rapid digestion workflow for PAGE separation of proteins using N,N'-bis(acryloyl)cystamine (BAC) cross-linked gels that can be solubilized by reductive treatment. Making use of an established workflow called BAC-DROP (BAC-gel dissolution to digest PAGE-resolved objective proteins), crude proteome samples were fractionated based on molecular weight by BAC cross-linked PAGE. After fractionation, the gel fragments were reductively dissolved in under 5 min, and in-solution trypsin digestion of the protein released from the gel was completed in less than 1 h at 70 °C, equivalent to a 90-95% reduction in time compared to conventional in-gel trypsin digestion. The introduction of the BAC-DROP workflow to the MS assays for inflammatory biomarker CRP and viral marker HBsAg allowed for serum sample preparation to be completed in as little as 5 h, demonstrating successful marker quantification from a 0.5 µL sample of human serum.


Assuntos
Proteoma , Proteômica , Digestão , Eletroforese em Gel de Poliacrilamida , Humanos , Fluxo de Trabalho
5.
J Proteome Res ; 19(9): 3779-3791, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32538093

RESUMO

Prefractionation of complex mixtures of proteins derived from biological samples is indispensable for proteome analysis via top-down mass spectrometry (MS). Polyacrylamide gel electrophoresis (PAGE), which enables high-resolution protein separation based on molecular size, is a widely used technique in biochemical experiments and has the potential to be useful in sample fractionation for top-down MS analysis. However, the lack of a means to efficiently recover the separated proteins in-gel has always been a barrier to its use in sample prefractionation. In this study, we present a novel experimental workflow, called Passively Eluting Proteins from Polyacrylamide gels as Intact species for MS ("PEPPI-MS"), which allows top-down MS of PAGE-separated proteins. The optimization of Coomassie brilliant blue staining followed by the passive extraction step in the PEPPI-MS workflow enabled the efficient recovery of proteins, separated on commercial precast gels, from a wide range of molecular weight regions in under 10 min. Two-dimensional separation combining offline PEPPI-MS with online reversed-phase liquid chromatographic separation resulted in identification of over 1000 proteoforms recovered from the target region of the gel (≤50 kDa). Given the widespread availability and relatively low cost of traditional sodium dodecyl sulfate (SDS)-PAGE equipment, the PEPPI-MS workflow will be a powerful prefractionation strategy for top-down proteomics.


Assuntos
Resinas Acrílicas , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas
6.
Mol Cell Proteomics ; 16(12): 2169-2183, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29055021

RESUMO

A major challenge in proteomics is the absolute accurate quantification of large numbers of proteins. QconCATs, artificial proteins that are concatenations of multiple standard peptides, are well established as an efficient means to generate standards for proteome quantification. Previously, QconCATs have been expressed in bacteria, but we now describe QconCAT expression in a robust, cell-free system. The new expression approach rescues QconCATs that previously were unable to be expressed in bacteria and can reduce the incidence of proteolytic damage to QconCATs. Moreover, it is possible to cosynthesize QconCATs in a highly-multiplexed translation reaction, coexpressing tens or hundreds of QconCATs simultaneously. By obviating bacterial culture and through the gain of high level multiplexing, it is now possible to generate tens of thousands of standard peptides in a matter of weeks, rendering absolute quantification of a complex proteome highly achievable in a reproducible, broadly deployable system.


Assuntos
Sistema Livre de Células/metabolismo , Peptídeos/metabolismo , Proteômica/normas , Sequência de Bases , Biblioteca Gênica , Humanos , Marcação por Isótopo , Peptídeos/genética , Proteoma , Proteômica/métodos , Espectrometria de Massas em Tandem
7.
Anal Chem ; 89(16): 8244-8250, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28723075

RESUMO

Biologists' preeminent toolbox for separating, analyzing, and visualizing proteins is SDS-PAGE, yet recovering the proteins embedded in these polyacrylamide media as intact species is a long-standing challenge for mass spectrometry. In conventional workflows, protein mixtures from crude biological samples are electrophoretically separated at high-resolution within N,N'-methylene-bis-acrylamide cross-linked polyacrylamide gels to reduce sample complexity and facilitate sensitive characterization. However, low protein recoveries, especially for high molecular weight proteins, often hinder characterization by mass spectrometry. We describe a workflow for top-down/bottom-up mass spectrometric analyses of proteins in polyacrylamide slab gels using dissolvable, bis-acryloylcystamine-cross-linked polyacrylamide, enabling high-resolution protein separations while recovering intact proteins over a broad size range efficiently. The inferior electrophoretic resolution long associated with reducible gels has been overcome, as demonstrated by SDS-PAGE of crude tissue extracts. This workflow elutes intact proteins efficiently, supporting MS and MS/MS from proteins resolved on biologists' preferred separation platform.


Assuntos
Resinas Acrílicas/química , Géis/química , Proteínas de Insetos/análise , Animais , Drosophila melanogaster , Eletroforese em Gel de Poliacrilamida/instrumentação , Eletroforese em Gel de Poliacrilamida/métodos , Espectrometria de Massas/métodos , Proteômica/métodos
8.
Methods Enzymol ; 682: 187-210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36948702

RESUMO

Mass spectrometry is an analytical technique that can detect protein molecules with high sensitivity. Its use is not limited to the mere identification of protein components in biological samples, but is recently being utilized for large-scale analysis of protein structures in vivo as well. Top-down mass spectrometry with an ultra-high resolution mass spectrometer, for example, ionizes proteins in their intact state and allows rapid analysis of their chemical structure, which is used to determine proteoform profiles. Furthermore, cross-linking mass spectrometry, which analyzes enzyme-digested fragments of chemically cross-linked protein complexes, allows acquisition of conformational information on protein complexes in multimolecular crowding environments. In the analysis workflow of structural mass spectrometry, prior fractionation of crude biological samples is an effective way to obtain more detailed structural information. Polyacrylamide gel electrophoresis (PAGE), known as a simple and reproducible means of protein separation in biochemistry, is one example of an excellent high-resolution sample prefractionation tool for structural mass spectrometry. This chapter describes elemental technologies for PAGE-based sample prefractionation including Passively Eluting Proteins from Polyacrylamide gels as Intact species for Mass Spectrometry (PEPPI-MS), a highly efficient method for intact in-gel protein recovery, and Anion-Exchange disk-assisted Sequential sample Preparation (AnExSP), a rapid enzymatic digestion method using a solid-phase extraction microspin column for gel-recovered proteins, in addition to presenting detailed experimental protocols and examples of their use for structural mass spectrometry.


Assuntos
Proteínas , Proteômica , Proteômica/métodos , Espectrometria de Massas/métodos , Proteínas/química , Eletroforese em Gel de Poliacrilamida , Fracionamento Químico
9.
Chem Commun (Camb) ; 58(6): 775-778, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34897310

RESUMO

We introduce a simple single-column protein digestion method for low-microgram-level samples containing sodium dodecyl sulfate and Coomassie dye that can be completed within a few hours.

10.
mSystems ; 7(2): e0002622, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35384696

RESUMO

Microbes that can recycle one-carbon (C1) greenhouse gases into fuels and chemicals are vital for the biosustainability of future industries. Acetogens are the most efficient known microbes for fixing carbon oxides CO2 and CO. Understanding proteome allocation is important for metabolic engineering as it dictates metabolic fitness. Here, we use absolute proteomics to quantify intracellular concentrations for >1,000 proteins in the model acetogen Clostridium autoethanogenum grown autotrophically on three gas mixtures (CO, CO+H2, or CO+CO2+H2). We detect the prioritization of proteome allocation for C1 fixation and the significant expression of proteins involved in the production of acetate and ethanol as well as proteins with unclear functions. The data also revealed which isoenzymes are likely relevant in vivo for CO oxidation, H2 metabolism, and ethanol production. The integration of proteomic and metabolic flux data demonstrated that enzymes catalyze high fluxes with high concentrations and high in vivo catalytic rates. We show that flux adjustments were dominantly accompanied by changing enzyme catalytic rates rather than concentrations. IMPORTANCE Acetogen bacteria are important for maintaining biosustainability as they can recycle gaseous C1 waste feedstocks (e.g., industrial waste gases and syngas from gasified biomass or municipal solid waste) into fuels and chemicals. Notably, the acetogen Clostridium autoethanogenum is being used as a cell factory in industrial-scale gas fermentation. Here, we perform reliable absolute proteome quantification for the first time in an acetogen. This is important as our work advances both rational metabolic engineering of acetogen cell factories and accurate in silico reconstruction of their phenotypes. Furthermore, this absolute proteomics data set serves as a reference toward a better systems-level understanding of the ancient metabolism of acetogens.


Assuntos
Dióxido de Carbono , Proteoma , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Proteômica , Gases/metabolismo , Etanol/metabolismo , Carbono
11.
Arthritis Res Ther ; 23(1): 91, 2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743769

RESUMO

BACKGROUND: We previously identified tissue inhibitor of metalloproteinase 1 (TIMP-1) as a biomarker of disease activity that distinguished mildly or highly active antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) from remission 6 months after the initiation of remission-induction therapy. In the present study, we investigated whether TIMP-1 is clinically useful as a predictor of relapse and sustained remission in AAV patients with microscopic polyangiitis (MPA) and granulomatosis with polyangiitis (GPA) during maintenance therapy. METHODS: The relationship between serum TIMP-1 levels and clinical outcomes in AAV patients receiving maintenance therapy was assessed using the follow-up data of a Japanese large-cohort study (the RemIT-JAV-RPGN study) and data collected from AAV patients on maintenance therapy in our hospital (the MAAV-EU study). RESULTS: In the RemIT-JAV RPGN study, serum levels of TIMP-1 were significantly higher in mildly active AAV patients with MPA and GPA 6 months after the initiation of remission-induction therapy than in patients in remission. Regarding maintenance therapy, elevated levels of TIMP-1 in patients in remission were associated with relapse and/or difficulty reducing the glucocorticoid dosage after 6 to 12 months. In the MAAV-EU study, serum levels of TIMP-1 were elevated in relapsed patients 6 months before relapse, earlier than the increase in serum levels of CRP. Analyses of both studies revealed that approximately 30% of patients in remission with a serum TIMP-1 level ≥ 150 ng/mL relapsed after 6 to 12 months, while the majority of patients with a TIMP-1 level < 150 ng/mL sustained remission for at least 12 months. CONCLUSION: We herein demonstrated that TIMP-1 is more useful as a predictive biomarker of sustained remission than as a predictor of relapse in maintenance therapy for AAV. TIMP-1 levels < 150 ng/mL are important for the long-term maintenance of remission and may be an indicator for the tapering or cessation of treatment.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Granulomatose com Poliangiite , Poliangiite Microscópica , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Anticorpos Anticitoplasma de Neutrófilos , Estudos de Coortes , Humanos , Indução de Remissão , Inibidor Tecidual de Metaloproteinase-1
12.
Plant Methods ; 15: 40, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31049073

RESUMO

BACKGROUND: Glandular trichomes found in vascular plants are called natural cell factories because they synthesize and store secondary metabolites in glandular cells. To systematically understand the metabolic processes in glandular cells, it is indispensable to analyze cellular proteome dynamics. The conventional proteomics methods based on mass spectrometry have enabled large-scale protein analysis, but require a large number of trichome samples for in-depth analysis and are not suitable for rapid and sensitive quantification of targeted proteins. RESULTS: Here, we present a high-throughput strategy for quantifying targeted proteins in specific trichome glandular cells, using selected reaction monitoring (SRM) assays. The SRM assay platform, targeting proteins in type VI trichome gland cells of tomato as a model system, demonstrated its effectiveness in quantifying multiple proteins from a limited amount of sample. The large-scale SRM assay uses a triple quadrupole mass spectrometer connected online to a nanoflow liquid chromatograph, which accurately measured the expression levels of 221 targeted proteins contained in the glandular cell sample recovered from 100 glandular trichomes within 120 min. Comparative quantitative proteomics using SRM assays of type VI trichome gland cells between different organs (leaves, green fruits, and calyx) revealed specific organ-enriched proteins. CONCLUSIONS: We present a targeted proteomics approach using the established SRM assays which enables quantification of proteins of interest with minimum sampling effort. The remarkable success of the SRM assay and its simple experimental workflow will increase proteomics research in glandular trichomes.

13.
Biotechnol Biofuels ; 11: 55, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29507607

RESUMO

BACKGROUND: The global demand for affordable carbon has never been stronger, and there is an imperative in many industrial processes to use waste streams to make products. Gas-fermenting acetogens offer a potential solution and several commercial gas fermentation plants are currently under construction. As energy limits acetogen metabolism, supply of H2 should diminish substrate loss to CO2 and facilitate production of reduced and energy-intensive products. However, the effects of H2 supply on CO-grown acetogens have yet to be experimentally quantified under controlled growth conditions. RESULTS: Here, we quantify the effects of H2 supplementation by comparing growth on CO, syngas, and a high-H2 CO gas mix using chemostat cultures of Clostridium autoethanogenum. Cultures were characterised at the molecular level using metabolomics, proteomics, gas analysis, and a genome-scale metabolic model. CO-limited chemostats operated at two steady-state biomass concentrations facilitated co-utilisation of CO and H2. We show that H2 supply strongly impacts carbon distribution with a fourfold reduction in substrate loss as CO2 (61% vs. 17%) and a proportional increase of flux to ethanol (15% vs. 61%). Notably, H2 supplementation lowers the molar acetate/ethanol ratio by fivefold. At the molecular level, quantitative proteome analysis showed no obvious changes leading to these metabolic rearrangements suggesting the involvement of post-translational regulation. Metabolic modelling showed that H2 availability provided reducing power via H2 oxidation and saved redox as cells reduced all the CO2 to formate directly using H2 in the Wood-Ljungdahl pathway. Modelling further indicated that the methylene-THF reductase reaction was ferredoxin reducing under all conditions. In combination with proteomics, modelling also showed that ethanol was synthesised through the acetaldehyde:ferredoxin oxidoreductase (AOR) activity. CONCLUSIONS: Our quantitative molecular analysis revealed that H2 drives rearrangements at several layers of metabolism and provides novel links between carbon, energy, and redox metabolism advancing our understanding of energy conservation in acetogens. We conclude that H2 supply can substantially increase the efficiency of gas fermentation and thus the feed gas composition can be considered an important factor in developing gas fermentation-based bioprocesses.

14.
Nat Commun ; 9(1): 3296, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120246

RESUMO

While menin plays an important role in preventing T-cell dysfunction, such as senescence and exhaustion, the regulatory mechanisms remain unclear. We found that menin prevents the induction of dysfunction in activated CD8 T cells by restricting the cellular metabolism. mTOR complex 1 (mTORC1) signaling, glycolysis, and glutaminolysis are augmented by menin deficiency. Rapamycin treatment prevents CD8 T-cell dysfunction in menin-deficient CD8 T cells. Limited glutamine availability also prevents CD8 T-cell dysfunction induced by menin deficiency, and its inhibitory effect is antagonized by α-ketoglutarate (α-KG), an intermediate metabolite of glutaminolysis. α-KG-dependent histone H3K27 demethylation seems to be involved in the dysfunction in menin-deficient CD8 T cells. We also found that α-KG activates mTORC1-dependent central carbon metabolism. These findings suggest that menin maintains the T-cell functions by limiting mTORC 1 activity and subsequent cellular metabolism.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ativação Metabólica/efeitos dos fármacos , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Carbono/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Glutamina/metabolismo , Histonas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Lisina/metabolismo , Metabolômica , Metilação/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas/deficiência , Sirolimo/farmacologia
15.
Arthritis Res Ther ; 19(1): 218, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28962592

RESUMO

BACKGROUND: Targeted proteomics, which involves quantitative analysis of targeted proteins using selected reaction monitoring (SRM) mass spectrometry, has emerged as a new methodology for discovery of clinical biomarkers. In this study, we used targeted serum proteomics to identify circulating biomarkers for prediction of disease activity and organ involvement in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). METHODS: A large-scale SRM assay targeting 135 biomarker candidates was established using a triple-quadrupole mass spectrometer coupled with nanoflow liquid chromatography. Target proteins in serum samples from patients in the active and remission (6 months after treatment) stages were quantified using the established assays. Identified marker candidates were further validated by enzyme-linked immunosorbent assay using serum samples (n = 169) collected in a large-cohort Japanese study (the RemIT-JAV-RPGN study). RESULTS: Our proteomic analysis identified the following proteins as biomarkers for discriminating patients with highly active AAV from those in remission or healthy control subjects: tenascin C (TNC), C-reactive protein (CRP), tissue inhibitor of metalloproteinase 1 (TIMP1), leucine-rich alpha-2-glycoprotein 1, S100A8/A9, CD93, matrix metalloproteinase 9, and transketolase (TKT). Of these, TIMP1 was the best-performing marker of disease activity, allowing distinction between mildly active AAV and remission. Moreover, in contrast to CRP, serum levels of TIMP1 in patients with active AAV were significantly higher than those in patients with infectious diseases. The serum levels of TKT and CD93 were higher in patients with renal involvement than in those without, and they predicted kidney outcome. The level of circulating TNC was elevated significantly in patients with lung infiltration. AAV severity was associated with markers reflecting organ involvement (TKT, CD93, and TNC) rather than inflammation. The eight markers and myeloperoxidase (MPO)-ANCA were clustered into three groups: MPO-ANCA, renal involvement (TKT and CD93), and inflammation (the other six markers). CONCLUSIONS: We have identified promising biomarkers of disease activity, disease severity, and organ involvement in AAV with a targeted proteomics approach using serum samples obtained from a large-cohort Japanese study. Especially, our analysis demonstrated the effectiveness of TIMP1 as a marker of AAV activity. In addition, we identified TKT and CD93 as novel markers for evaluation of renal involvement and kidney outcome in AAV.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/sangue , Biomarcadores/sangue , Proteômica/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
16.
Mol Biosyst ; 12(8): 2389-93, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27203355

RESUMO

Quantitative proteomic approaches using selected reaction monitoring (SRM) are currently limited by the difficulty in the preparation of reference standards. In this study, we demonstrat the high-throughput production of a reference peptide library using a wheat germ cell-free synthesis system to develop a large-scale SRM assay for targeted proteomics.


Assuntos
Ensaios de Triagem em Larga Escala , Marcação por Isótopo , Biblioteca de Peptídeos , Proteômica , Sementes/metabolismo , Triticum/metabolismo , Sistema Livre de Células , Proteômica/métodos , Espectrometria de Massas em Tandem
17.
Nat Commun ; 7: 12596, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581382

RESUMO

Although Bach2 has an important role in regulating the Th2-type immune response, the underlying molecular mechanisms remain unclear. We herein demonstrate that Bach2 associates with Batf and binds to the regulatory regions of the Th2 cytokine gene loci. The Bach2-Batf complex antagonizes the recruitment of the Batf-Irf4 complex to AP-1 motifs and suppresses Th2 cytokine production. Furthermore, we find that Bach2 regulates the Batf and Batf3 expressions via two distinct pathways. First, Bach2 suppresses the maintenance of the Batf and Batf3 expression through the inhibition of IL-4 production. Second, the Bach2-Batf complex directly binds to the Batf and Batf3 gene loci and reduces transcription by interfering with the Batf-Irf4 complex. These findings suggest that IL-4 and Batf form a positive feedback amplification loop to induce Th2 cell differentiation and the subsequent Th2-type immune response, and Bach2-Batf interactions are required to prevent an excessive Th2 response.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores Reguladores de Interferon/genética , Proteínas Repressoras/genética , Células Th2/imunologia , Animais , Diferenciação Celular/imunologia , Feminino , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/metabolismo , Interleucina-4/biossíntese , Interleucina-4/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Repressoras/metabolismo , Fator de Transcrição STAT6/genética , Transcrição Gênica/genética
18.
Mol Biosyst ; 11(2): 361-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25431973

RESUMO

Using a wheat germ cell-free protein synthesis system, we developed a high-throughput method for the synthesis of stable isotope-labeled full-length transmembrane proteins as proteoliposomes to mimic the in vivo environment, and we successfully constructed an internal standard library for targeted transmembrane proteomics by using mass spectrometry.


Assuntos
Marcação por Isótopo/métodos , Proteínas de Membrana/metabolismo , Biossíntese de Proteínas , Proteômica/métodos , Triticum/química , Sequência de Aminoácidos , Animais , Sistema Livre de Células , Proteínas de Membrana/química , Camundongos , Dados de Sequência Molecular , Receptores de Neurotransmissores/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-25063926

RESUMO

Enzymatic protein digestion in polyacrylamide gel has been used for sample pretreatment in mass spectrometry-based proteomics due to its effectiveness in removing contaminants that interfere with sample ionization. However, the difficulty of recovering the digested peptides from the solid gel matrix has been a drawback of this method. Here we have developed a novel in-gel digestion method to enhance peptide recovery using a dissolvable, bis-acrylylcystamine (BAC)-crosslinked polyacrylamide gel. After enzymatic protein digestion in BAC gel, we completely dissolved the gel by reductive treatment with tris-(2-carboxyethyl) phosphine to release the digested peptides from the gel. Our analysis revealed that the reductive dissolution of the BAC gel enhances the peptide recovery, which has a significantly higher protein identification capability than the conventional method, using an insoluble polyacrylamide gel. In addition, protein samples trapped in dehydrated BAC gel were stable at room temperature and reproducible sample recovery was obtained after storage for one week. These results indicate that the proposed method could be an effective tool for conducting sample pretreatment for mass spectrometry-based protein analysis.


Assuntos
Espectrometria de Massas/métodos , Fragmentos de Peptídeos/análise , Mapeamento de Peptídeos/métodos , Proteômica/métodos , Tripsina/metabolismo , Sequência de Aminoácidos , Animais , Cromatografia Líquida , Drosophila/química , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA