Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
PLoS Pathog ; 20(6): e1012329, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900816

RESUMO

Coronavirus (CoV) nonstructural protein 1 (nsp1) is considered a pathogenic factor due to its ability to inhibit host antiviral responses by inducing general shutoff of host protein synthesis. Nsp1 is expressed by α- and ß-CoVs, but its functions and strategies to induce host shutoff are not fully elucidated. We compared the nsp1s from two ß-CoVs (SARS-CoV and SARS-CoV-2) and two α-CoVs (NL63 and 229E) and found that NL63 nsp1 has the strongest shutoff activity. Unlike SARS-CoV nsp1s, which bind to 40S ribosomes and block translation of cellular mRNA, NL63 nsp1 did not inhibit translation of mRNAs transfected into cells. Instead, NL63 nsp1 localized to the nucleus and specifically inhibited transcription of genes under an RNA polymerase II (RNAPII) promoter. Further analysis revealed that NL63 nsp1 induces degradation of the largest subunit of RNAPII, Rpb1. This degradation was detected regardless of the phosphorylation state of Rpb1 and was blocked by the proteasome inhibitor MG132. We also found that Rpb1 was ubiquitinated in NL63-infected cells, and inhibition of ubiquitination by a ubiquitin activating enzyme inhibitor (TAK243) prevented degradation of Rpb1 in virus-infected cells. These data reveal an unrecognized strategy of host shutoff by human α-CoV NL63: targeting host transcription by inducing Rpb1 degradation to prevent host protein expression. Our study indicates that viruses within the same family can use completely distinct mechanisms to regulate host antiviral responses.


Assuntos
Biossíntese de Proteínas , RNA Polimerase II , Proteínas não Estruturais Virais , Humanos , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , RNA Polimerase II/metabolismo , Coronavirus Humano NL63/metabolismo , SARS-CoV-2 , Células HEK293
2.
PLoS Pathog ; 17(9): e1009908, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34529742

RESUMO

Human parainfluenza virus type 1 (hPIV1) and 3 (hPIV3) cause seasonal epidemics, but little is known about their interaction with human airway cells. In this study, we determined cytopathology, replication, and progeny virion release from human airway cells during long-term infection in vitro. Both viruses readily established persistent infection without causing significant cytopathic effects. However, assembly and release of hPIV1 rapidly declined in sharp contrast to hPIV3 due to impaired viral ribonucleocapsid (vRNP) trafficking and virus assembly. Transcriptomic analysis revealed that both viruses induced similar levels of type I and III IFNs. However, hPIV1 induced specific ISGs stronger than hPIV3, such as MX2, which bound to hPIV1 vRNPs in infected cells. In addition, hPIV1 but not hPIV3 suppressed genes involved in lipid biogenesis and hPIV1 infection resulted in ubiquitination and degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, a rate limiting enzyme in cholesterol biosynthesis. Consequently, formation of cholesterol-rich lipid rafts was impaired in hPIV1 infected cells. These results indicate that hPIV1 is capable of regulating cholesterol biogenesis, which likely together with ISGs contributes to establishment of a quiescent infection.


Assuntos
Colesterol/biossíntese , Mucosa Respiratória/virologia , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/virologia , Células A549 , Humanos , Interferons/imunologia , Vírus da Parainfluenza 1 Humana/imunologia , Vírus da Parainfluenza 1 Humana/metabolismo , Vírus da Parainfluenza 3 Humana/imunologia , Vírus da Parainfluenza 3 Humana/metabolismo , Infecções por Respirovirus/imunologia
3.
PLoS Pathog ; 14(11): e1007465, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30496325

RESUMO

Influenza A viruses modulate host antiviral responses to promote viral growth and pathogenicity. Through viral PA-X and NS1 proteins, the virus is capable of suppressing host protein synthesis, termed "host shutoff." Although both proteins are known to induce general shutoff, specificity of target genes and their functional interplay in mediating host shutoff are not fully elucidated. In this study, we generated four recombinant influenza A/California/04/2009 (pH1N1) viruses containing mutations affecting the expression of active PA-X and NS1. We analyzed viral growth, general shutoff activity, specificity of mRNA targets, and viral gene expressions. Our results showed that PA-X was the major contributor in reducing general host protein expression in the virus-infected cells. Intriguingly, our transcriptomic analysis from infected human airway A549 cells indicate that shutoff-active NS1 specifically targeted host mRNAs related to interferon (IFN) signaling pathways and cytokine release. Specificity of target mRNAs was less evident in PA-X, although it preferentially degraded genes associated with cellular protein metabolism and protein repair. Interestingly, in the presence of shutoff-active NS1, PA-X also degraded viral mRNAs, especially NS segments. The virus expressing shutoff-active NS1 with reduced amount of PA-X expression most efficiently suppressed antiviral and innate immune responses in human cells, indicating that influenza virus needs to optimize the contribution of these two shutoff proteins to circumvent host responses for its optimum growth.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Proteínas Repressoras/metabolismo , Proteínas não Estruturais Virais/metabolismo , Células A549 , Antivirais , Células HEK293 , Humanos , Imunidade Inata/imunologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A/genética , Influenza Humana/virologia , Interferons/metabolismo , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas não Estruturais Virais/genética , Replicação Viral
4.
J Virol ; 90(16): 7131-7141, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27226377

RESUMO

UNLABELLED: PA-X is a recently identified influenza virus protein that is composed of the PA N-terminal 191 amino acids and unique C-terminal 41 or 61 residues. We and others showed that PA-X has a strong ability to suppress host protein synthesis via host mRNA decay, which is mediated by endonuclease activity in its N-terminal domain (B. W. Jagger, H. M. Wise, J. C. Kash, K. A. Walters, N. M. Wills, Y. L. Xiao, R. L. Dunfee, L. M. Schwartzman, A. Ozinsky, G. L. Bell, R. M. Dalton, A. Lo, S. Efstathiou, J. F. Atkins, A. E. Firth, J. K. Taubenberger, and P. Digard, 2012, Science 337:199-204, http://dx.doi.org/10.1126/science.1222213, and E. A. Desmet, K. A. Bussey, R. Stone, and T. Takimoto, 2013, J Virol 87:3108-3118, http://dx.doi.org/10.1128/JVI.02826-12). However, the mechanism of host mRNA degradation, especially where and how PA-X targets mRNAs, has not been analyzed. In this study, we determined the localization of PA-X and the role of the C-terminal unique region in shutoff activity. Quantitative subcellular localization analysis revealed that PA-X was located equally in both cytoplasm and nucleus. By characterizing a series of PA-X C-terminal deletion mutants, we found that the first 9 amino acids were sufficient for nuclear localization, but an additional 6 residues were required to induce the maximum shutoff activity observed with intact PA-X. Importantly, forced nuclear localization of the PA-X C-terminal deletion mutant enhanced shutoff activity, highlighting the ability of nuclear PA-X to degrade host mRNAs more efficiently. However, PA-X also inhibited luciferase expression from transfected mRNAs synthesized in vitro, suggesting that PA-X also degrades mRNAs in the cytoplasm. Among the basic amino acids in the PA-X C-terminal region, 3 residues, 195K, 198K, and 199R, were identified as key residues for inducing host shutoff and nuclear localization. Overall, our data indicate a critical role for the 15 residues in the PA-X C-terminal domain in degrading mRNAs in both the cytoplasm and nucleus. IMPORTANCE: Influenza A viruses express PA-X proteins to suppress global host gene expression, including host antiviral genes, to allow efficient viral replication in infected cells. However, little is known about how PA-X induces host shutoff. In this study, we showed that PA-X localized equally in both the cytoplasm and nucleus of the cells, but the nuclear localization of PA-X mediated by its C-terminal region has a significant impact on shutoff activity. Three basic residues at the C-terminal region play a critical role in nuclear localization, but additional basic residues were required for maximum shutoff activity. Our findings indicate that PA-X targets and degrades mRNAs in both the nucleus and cytoplasm, and that the first 15 residues of the PA-X unique C-terminal region play a critical role in shutoff activity.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Influenza A/fisiologia , Influenza Humana/metabolismo , Proteínas Repressoras/metabolismo , Proteínas não Estruturais Virais/metabolismo , Células A549 , Sequência de Aminoácidos , Northern Blotting , Western Blotting , Células HEK293 , Humanos , Influenza Humana/genética , Influenza Humana/virologia , Mutação/genética , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Frações Subcelulares , Proteínas não Estruturais Virais/genética , Replicação Viral
5.
J Virol ; 89(15): 8042-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26018156

RESUMO

UNLABELLED: Mutations in the polymerase genes are known to play a major role in avian influenza virus adaptation to mammalian hosts. Despite having avian origin PA and PB2, the 2009 pandemic H1N1 virus (pH1N1) can replicate well in mammalian respiratory tracts, suggesting that these proteins have acquired mutations for efficient growth in humans. We have previously shown that PA from the pH1N1 virus A/California/04/09 (Cal) strongly enhances activity of an otherwise avian polymerase complex derived from A/chicken/Nanchang/3-120/01 (Nan) in mammalian cells. However, this enhancement was observed at 37°C but not at the lower temperature of 34°C. An additional introduction of Cal PB2 enhanced activity at 34°C, suggesting the presence of unidentified residues in Cal PB2 that are required for efficient growth at low temperature. Here, we sought to determine the key PB2 residues which confer enhanced polymerase activity and virus growth in human cells at low temperature. Using a reporter gene assay, we identified novel mutations, PB2 V661A and V683T/A684S, which are involved in enhanced Cal polymerase activity at low temperature. The PB2 T271A mutation, which we previously reported, also contributed to enhanced activity. The growth of recombinant Cal containing PB2 with Nan residues 271T/661V/683V/684A was strongly reduced in human cells compared to wild-type virus at low temperature. Among the four residues, 271A and 684S are conserved in human and pH1N1 viruses but not in avian viruses, suggesting an important role in mammalian adaptation of pH1N1 virus. IMPORTANCE: The PB2 protein plays a key role in the host adaptation, cold sensitivity, and pathogenesis of influenza A virus. Despite containing an avian origin PB2 lacking the mammalian adaptive mutations 627K or 701N, pH1N1 influenza virus strains can replicate efficiently in the low temperature upper respiratory tract of mammals, suggesting the presence of unknown mutations in the pH1N1 PB2 protein responsible for its low temperature adaptation. Here, in addition to PB2 271A, which has been shown to increase polymerase activity, we identified novel PB2 residues 661A and 683T/684S in pH1N1 which confer enhanced polymerase activity and virus growth in mammalian cells especially at low temperature. Our findings suggest that the presence of these PB2 residues contributes to efficient replication of the pH1N1 virus in the upper respiratory tract, which resulted in efficient human-to-human transmission of this virus.


Assuntos
Vírus da Influenza A Subtipo H1N1/enzimologia , Influenza Humana/virologia , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Temperatura Baixa , Humanos , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética
6.
J Virol ; 89(12): 6442-52, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25855745

RESUMO

UNLABELLED: Influenza virus infection causes global inhibition of host protein synthesis in infected cells. This host shutoff is thought to allow viruses to escape from the host antiviral response, which restricts virus replication and spread. Although the mechanism of host shutoff is unclear, a novel viral protein expressed by ribosomal frameshifting, PA-X, was found to play a major role in influenza virus-induced host shutoff. However, little is known about the impact of PA-X expression on currently circulating influenza A virus pathogenicity and the host antiviral response. In this study, we rescued a recombinant influenza A virus, A/California/04/09 (H1N1, Cal), containing mutations at the frameshift motif in the polymerase PA gene (Cal PA-XFS). Cal PA-XFS expressed significantly less PA-X than Cal wild type (WT). Cal WT, but not Cal PA-XFS, induced degradation of host ß-actin mRNA and suppressed host protein synthesis, supporting the idea that PA-X induces host shutoff via mRNA decay. Moreover, Cal WT inhibited beta interferon (IFN-ß) expression and replicated more rapidly than Cal PA-XFS in human respiratory cells. Mice infected with Cal PA-XFS had significantly lower levels of viral growth and greater expression of IFN-ß mRNA in their lungs than mice infected with Cal WT. Importantly, more antihemagglutinin and neutralizing antibodies were produced in Cal PA-XFS-infected mice than in Cal WT-infected mice, despite the lower level of virus replication in the lungs. Our data indicate that PA-X of the pandemic H1N1 virus has a strong impact on viral growth and the host innate and acquired immune responses to influenza virus. IMPORTANCE: Virus-induced host protein shutoff is considered to be a major factor allowing viruses to evade innate and acquired immune recognition. We provide evidence that the 2009 H1N1 influenza A virus protein PA-X plays a role in virus replication and inhibition of host antiviral response by means of its host protein synthesis shutoff activity both in vitro and in vivo. We also demonstrated that, while the growth of Cal PA-XFS was attenuated in the lungs of infected animals, this mutant induced a stronger humoral response than Cal WT. Our findings clearly highlight the importance of PA-X in counteracting the host innate and acquired immune responses to influenza virus, an important global pathogen. This work demonstrates that inhibition of PA-X expression in influenza virus vaccine strains may provide a novel way of safely attenuating viral growth while inducing a more robust immune response.


Assuntos
Evasão da Resposta Imune , Tolerância Imunológica , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Proteínas Repressoras/metabolismo , Proteínas não Estruturais Virais/metabolismo , Fatores de Virulência/metabolismo , Replicação Viral , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Interferon beta/biossíntese , Interferon beta/genética , Pulmão/patologia , Pulmão/virologia , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Estabilidade de RNA , RNA Mensageiro/análise
7.
Int Immunol ; 27(5): 229-36, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25477211

RESUMO

The respiratory syncytial virus (RSV) is responsible for as many as 199000 annual deaths worldwide. Currently, there is no standard treatment for RSV disease and no vaccine. Sendai virus (SeV) is an attractive pediatric vaccine candidate because it elicits robust and long-lasting virus-specific B cell and T cell activities in systemic and mucosal tissues. The virus serves as a gene delivery system as well as a Jennerian vaccine against its close cousin, human parainfluenza virus type 1. Here we describe the testing of a recombinant SeV (SeVRSV-Fs) that expresses an unconstrained, secreted RSV-F protein as a vaccine against RSV in cotton rats. After a single intranasal immunization of cotton rats with SeVRSV-Fs, RSV-specific binding and neutralizing antibodies were generated. These antibodies exhibited cross-reactivity with both RSV A and B isolates. RSV-F-specific IFN-γ-producing T cells were also activated. The SeVRSV-Fs vaccine conferred protection against RSV challenge without enhanced immunopathology. In total, results showed that an SeV recombinant that expresses RSV F in an unconstrained, soluble form can induce humoral and cellular immunity that protects against infection with RSV.


Assuntos
Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sinciciais Respiratórios/metabolismo , Vírus Sendai/imunologia , Linfócitos T/imunologia , Vacinas Virais/administração & dosagem , Administração Intranasal , Animais , Anticorpos Antivirais/metabolismo , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Humanos , Imunização , Interferon gama/metabolismo , Ativação Linfocitária , Ratos , Proteínas Recombinantes de Fusão/genética , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/genética , Vírus Sendai/genética , Sigmodontinae , Linfócitos T/virologia , Proteínas Virais de Fusão/genética , Vacinas Virais/genética
8.
J Virol ; 88(4): 2227-34, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24335312

RESUMO

Influenza virus strains are often pleiomorphic, a characteristic that is largely attributed to specific residues in matrix protein 1 (M1). Although the mechanism by which M1 controls virion morphology has not yet been defined, it is suggested that the M1 interaction with other viral proteins plays an important role. In this study, we rescued recombinant virus WSN-AichiM1 containing the spherical A/WSN/33 (WSN) backbone and the M1 protein from A/Aichi/2/68 (Aichi). Aichi M1 differs from WSN M1 by 7 amino acids but includes those identified to be responsible for filamentous virion formation. Interestingly, Aichi virus produced spherical virions, while WSN-AichiM1 exhibited a long filamentous morphology, as detected by immunofluorescence and electron microscopy. Additional incorporation of Aichi nucleoprotein (NP) but not the hemagglutinin (HA), neuraminidase (NA), or M2 gene to WSN-AichiM1 abrogated filamentous virion formation, suggesting that specific M1-NP interactions affect virion morphology. Further characterization of viruses containing WSN/Aichi chimeric NPs identified residues 214, 217, and 253 of Aichi NP as necessary and sufficient for the formation of spherical virions. NP residues 214 and 217 localize at the minor groove between the two opposite-polarity NP helical strands of viral ribonucleocapsids, and residue 253 also localizes near the surface of the groove. These findings indicate that NP plays a critical role in influenza virus morphology, possibly through its interaction with the M1 layer during virus budding.


Assuntos
Vírus da Influenza A/ultraestrutura , Conformação Molecular , Nucleoproteínas/genética , RNA/genética , Proteínas da Matriz Viral/metabolismo , Animais , Western Blotting , Cães , Células HEK293 , Humanos , Hibridização Genética , Imunoprecipitação , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Kobuvirus/genética , Kobuvirus/ultraestrutura , Células Madin Darby de Rim Canino , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Proteínas da Matriz Viral/genética
9.
J Virol ; 87(6): 3108-18, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23283952

RESUMO

Cellular protein synthesis is suppressed during influenza virus infection, allowing for preferential production of viral proteins. To explore the impact of polymerase subunits on protein synthesis, we coexpressed enhanced green fluorescent protein (eGFP) or luciferase together with each polymerase component or NS1 of A/California/04/2009 (Cal) and found that PA has a significant impact on the expression of eGFP and luciferase. Comparison of the suppressive activity on coexpressed proteins between various strains revealed that avian virus or avian-origin PAs have much stronger activity than human-origin PAs, such as the one from A/WSN/33 (WSN). Protein synthesis data suggested that reduced expression of coexpressed proteins is not due to PA's reported proteolytic activity. A recombinant WSN containing Cal PA showed enhanced host protein synthesis shutoff and induction of apoptosis. Further characterization of the PA fragment indicated that the N-terminal domain (PANt), which includes the endonuclease active site, is sufficient to suppress cotransfected gene expression. By characterizing various chimeric PANts, we found that multiple regions of PA, mainly the helix α4 and the flexible loop of amino acids 51 to 74, affect the activity. The suppressive effect of PANt cDNA was mainly due to PA-X, which was expressed by ribosomal frameshifting. In both Cal and WSN viruses, PA-X showed a stronger effect than the corresponding PANt, suggesting that the unique C-terminal sequences of PA-X also play a role in suppressing cotransfected gene expression. Our data indicate strain variations in PA gene products, which play a major role in suppression of host protein synthesis.


Assuntos
Interações Hospedeiro-Patógeno , Vírus da Influenza A/enzimologia , Vírus da Influenza A/patogenicidade , Biossíntese de Proteínas , Proteínas Repressoras/metabolismo , Proteínas não Estruturais Virais/metabolismo , Fatores de Virulência/metabolismo , Análise Mutacional de DNA , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Humanos , Luciferases/biossíntese , Proteínas Repressoras/genética , Proteínas não Estruturais Virais/genética , Fatores de Virulência/genética
10.
Viruses ; 16(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39066299

RESUMO

Influenza A viruses (IAV) utilize host proteins throughout their life cycle to infect and replicate in their hosts. We previously showed that host adaptive mutations in avian IAV PA help recruit host protein G-Rich RNA Sequence Binding Factor 1 (GRSF1) to the nucleoprotein (NP) 5' untranslated region (UTR), leading to the enhanced nuclear export and translation of NP mRNA. In this study, we evaluated the impact of GRSF1 in the viral life cycle. We rescued and characterized a 2009 pH1N1 virus with a mutated GRSF1 binding site in the 5' UTR of NP mRNA. Mutant viral growth was attenuated relative to pH1N1 wild-type (WT) in mammalian cells. We observed a specific reduction in the NP protein production and cytosolic accumulation of NP mRNAs, indicating a critical role of GRSF1 in the nuclear export of IAV NP mRNAs. Further, in vitro-transcribed mutated NP mRNA was translated less efficiently than WT NP mRNA in transfected cells. Together, these findings show that GRSF1 binding is important for both mRNA nuclear export and translation and affects overall IAV growth. Enhanced association of GRSF1 to NP mRNA by PA mutations leads to rapid virus growth, which could be a key process of mammalian host adaptation of IAV.


Assuntos
Transporte Ativo do Núcleo Celular , Biossíntese de Proteínas , RNA Mensageiro , RNA Viral , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Animais , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Vírus da Influenza A/metabolismo , Replicação Viral , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Regiões 5' não Traduzidas/genética , Proteínas do Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/genética , Células Madin Darby de Rim Canino , Células HEK293 , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Cães , Influenza Humana/virologia , Influenza Humana/metabolismo , Influenza Humana/genética , Mutação , Interações Hospedeiro-Patógeno/genética , Proteínas do Core Viral/metabolismo , Proteínas do Core Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA