Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 75(11): 3351-3367, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38459807

RESUMO

In gymnosperms such as Ginkgo biloba, the arrival of pollen plays a key role in ovule development, before fertilization occurs. Accordingly, G. biloba female plants geographically isolated from male plants abort all their ovules after the pollination drop emission, which is the event that allows the ovule to capture pollen grains. To decipher the mechanism induced by pollination required to avoid ovule senescence and then abortion, we compared the transcriptomes of pollinated and unpollinated ovules at three time points after the end of the emission of pollination drop. Transcriptomic and in situ expression analyses revealed that several key genes involved in programmed cell death such as senescence and apoptosis, DNA replication, and cell cycle regulation were differentially expressed in unpollinated ovules compared to pollinated ovules. We provide evidence that the pollen captured by the pollination drop affects auxin local accumulation and might cause deregulation of key genes required for the ovule's programmed cell death, activating both the cell cycle regulation and DNA replication genes.


Assuntos
Ginkgo biloba , Óvulo Vegetal , Pólen , Polinização , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/fisiologia , Óvulo Vegetal/genética , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Ginkgo biloba/genética , Ginkgo biloba/fisiologia , Ginkgo biloba/crescimento & desenvolvimento , Transcriptoma , Regulação da Expressão Gênica de Plantas
2.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298924

RESUMO

Coumarin is a phytotoxic natural compound able to affect plant growth and development. Previous studies have demonstrated that this molecule at low concentrations (100 µM) can reduce primary root growth and stimulate lateral root formation, suggesting an auxin-like activity. In the present study, we evaluated coumarin's effects (used at lateral root-stimulating concentrations) on the root apical meristem and polar auxin transport to identify its potential mode of action through a confocal microscopy approach. To achieve this goal, we used several Arabidopsis thaliana GFP transgenic lines (for polar auxin transport evaluation), immunolabeling techniques (for imaging cortical microtubules), and GC-MS analysis (for auxin quantification). The results highlighted that coumarin induced cyclin B accumulation, which altered the microtubule cortical array organization and, consequently, the root apical meristem architecture. Such alterations reduced the basipetal transport of auxin to the apical root apical meristem, inducing its accumulation in the maturation zone and stimulating lateral root formation.


Assuntos
Arabidopsis/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Cumarínicos/farmacologia , Ácidos Indolacéticos/metabolismo , Meristema/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Meristema/metabolismo , Microtúbulos/metabolismo , Raízes de Plantas/metabolismo
3.
Plant Sci ; 332: 111726, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37149227

RESUMO

Cadmium (Cd), one of the most widespread and water-soluble polluting heavy metals, has been widely studied on plants, even if the mechanisms underlying its phytotoxicity remain elusive. Indeed, most experiments are performed using extensive exposure time to the toxicants, not observing the primary targets affected. The present work studied Cd effects on Arabidopsis thaliana (L.) Heynh's root apical meristem (RAM) exposed for short periods (24 h and 48 h) to acute phytotoxic concentrations (100 and 150 µM). The effects were studied through integrated morpho-histological, molecular, pharmacological and metabolomic analyses, highlighting that Cd inhibited primary root elongation by affecting the meristem zone via altering cell expansion. Moreover, Cd altered Auxin accumulation in RAM and affected PINs polar transporters, particularly PIN2. In addition, we observed that high Cd concentration induced accumulation of reactive oxygen species (ROS) in roots, which resulted in an altered organization of cortical microtubules and the starch and sucrose metabolism, altering the statolith formation and, consequently, the gravitropic root response. Our results demonstrated that short Cd exposition (24 h) affected cell expansion preferentially, altering auxin distribution and inducing ROS accumulation, which resulted in an alteration of gravitropic response and microtubules orientation pattern.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Percepção
4.
Plants (Basel) ; 12(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36616318

RESUMO

trans-Cinnamic acid is a phenolic compound widely studied in plant metabolism due to its importance in regulating different plant processes. Previous studies on maize plants showed that this compound could affect plant growth and causes metabolic changes in the leaves when applied. However, its effects on root metabolism are not well known. This study analyses the short-term effect of trans-cinnamic acid on the morphology of vascular bundle elements and metabolism in maize roots. At short times (between 6 and 12 h), there is a reduction in the content of many amino acids which may be associated with the altered nitrogen uptake observed in earlier work. In addition, the compound caused an alteration of the vascular bundles at 48 h and seemed to have changed the metabolism in roots to favor lignin and galactose synthesis. The results obtained complement those previously carried out on maize plants, demonstrating that in the short term trans-cinnamic acid can trigger stress-coping processes in the treated plants.

5.
Sci Rep ; 11(1): 10965, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040101

RESUMO

DNA methylation plays an important role in modulating plant growth plasticity in response to stress, but mechanisms involved in such control need further investigation. We used drm1 drm2 cmt3 mutant of Arabidopsis thaliana, defective in DNA methylation, to explore metabolic pathways downstream epigenetic modulation under cadmium (Cd) stress. To this aim, a transcriptomic analysis was performed on ddc and WT plants exposed to a long-lasting (21 d) Cd treatment (25/50 µM), focusing on hormone genetic pathways. Growth parameters and hormones amount were also estimated. Transcriptomic data and hormone quantification showed that, under prolonged Cd treatment, level and signalling of growth-sustaining hormones (auxins, CKs, GAs) were enhanced and/or maintained, while a decrease was detected for stress-related hormones (JA, ABA, SA), likely as a strategy to avoid the side effects of their long-lasting activation. Such picture was more effective in ddc than WT, already at 25 µM Cd, in line with its better growth performance. A tight relationship between methylation status and the modulation of hormone genetic pathways under Cd stress was assessed. We propose that the higher genome plasticity conferred to ddc by DNA hypomethylated status underlies its prompt response to modulate hormones genetic pathways and activity and assure a flexible growth.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Cádmio/farmacologia , DNA-Citosina Metilases/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metiltransferases/fisiologia , Reguladores de Crescimento de Plantas/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Sequência de Bases , Citocininas/biossíntese , Citocininas/genética , Metilação de DNA , DNA de Plantas/genética , DNA-Citosina Metilases/deficiência , DNA-Citosina Metilases/genética , Genes de Plantas , Metiltransferases/deficiência , Metiltransferases/genética , Mutação , Raízes de Plantas/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA de Plantas/genética , Poluentes do Solo/farmacologia , Estresse Fisiológico/genética , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA