Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 554(7692): 311-316, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29414943

RESUMO

The genus Citrus, comprising some of the most widely cultivated fruit crops worldwide, includes an uncertain number of species. Here we describe ten natural citrus species, using genomic, phylogenetic and biogeographic analyses of 60 accessions representing diverse citrus germ plasms, and propose that citrus diversified during the late Miocene epoch through a rapid southeast Asian radiation that correlates with a marked weakening of the monsoons. A second radiation enabled by migration across the Wallace line gave rise to the Australian limes in the early Pliocene epoch. Further identification and analyses of hybrids and admixed genomes provides insights into the genealogy of major commercial cultivars of citrus. Among mandarins and sweet orange, we find an extensive network of relatedness that illuminates the domestication of these groups. Widespread pummelo admixture among these mandarins and its correlation with fruit size and acidity suggests a plausible role of pummelo introgression in the selection of palatable mandarins. This work provides a new evolutionary framework for the genus Citrus.


Assuntos
Citrus/classificação , Citrus/genética , Evolução Molecular , Especiação Genética , Genoma de Planta/genética , Genômica , Filogenia , Sudeste Asiático , Biodiversidade , Produção Agrícola/história , Haplótipos/genética , Heterozigoto , História Antiga , Migração Humana , Hibridização Genética
2.
BMC Plant Biol ; 22(1): 123, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35300613

RESUMO

BACKGROUND: Interspecific hybridizations and admixtures were key in Citrus domestication, but very little is known about their impact at the transcriptomic level. To determine the effects of genome introgressions on gene expression, the transcriptomes of the pulp and flavedo of three pure species (citron, pure mandarin and pummelo) and four derived domesticated genetic admixtures (sour orange, sweet orange, lemon and domesticated mandarin) have been analyzed at color break. RESULTS: Many genes involved in relevant physiological processes for domestication, such sugar/acid metabolism and carotenoid/flavonoid synthesis, were differentially expressed among samples. In the low-sugar, highly acidic species lemon and citron, many genes involved in sugar metabolism, the TCA cycle and GABA shunt displayed a reduced expression, while the P-type ATPase CitPH5 and most subunits of the vacuolar ATPase were overexpressed. The red-colored species and admixtures were generally characterized by the overexpression in the flavedo of specific pivotal genes involved in the carotenoid biosynthesis, including phytoene synthase, ζ-carotene desaturase, ß-lycopene cyclase and CCD4b, a carotenoid cleavage dioxygenase. The expression patterns of many genes involved in flavonoid modifications, especially the flavonoid and phenylpropanoid O-methyltransferases showed extreme diversity. However, the most noticeable differential expression was shown by a chalcone synthase gene, which catalyzes a key step in the biosynthesis of flavonoids. This chalcone synthase was exclusively expressed in mandarins and their admixed species, which only expressed the mandarin allele. In addition, comparisons between wild and domesticated mandarins revealed that the major differences between their transcriptomes concentrate in the admixed regions. CONCLUSION: In this work we present a first study providing broad evidence that the genome introgressions that took place during citrus domestication largely shaped gene expression in their fruits.


Assuntos
Citrus sinensis , Citrus , Citrus/genética , Citrus/metabolismo , Citrus sinensis/genética , Domesticação , Frutas/genética , Frutas/metabolismo , Transcriptoma
3.
Plant Physiol ; 187(2): 829-845, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608960

RESUMO

Domesticated citrus varieties are woody perennials and interspecific hybrid crops of global economic and nutritional importance. The citrus fruit "hesperidium" is a unique morphological innovation not found in any other plant lineage. Efforts to improve the nutritional quality of the fruit are predicated on understanding the underlying regulatory mechanisms responsible for fruit development, including temporal control of chlorophyll degradation and carotenoid biosynthesis. Here, we investigated the molecular basis of the navel orange (Citrus sinensis) brown flavedo mutation, which conditions flavedo that is brown instead of orange. To overcome the limitations of using traditional genetic approaches in citrus and other woody perennials, we developed a strategy to elucidate the underlying genetic lesion. We used a multi-omics approach to collect data from several genetic sources and plant chimeras to successfully decipher this mutation. The multi-omics strategy applied here will be valuable in driving future gene discovery efforts in citrus as well as in other woody perennial plants. The comparison of transcriptomic and genomic data from multiple genotypes and plant sectors revealed an underlying lesion in the gene encoding STAY-GREEN (SGR) protein, which simultaneously regulates carotenoid biosynthesis and chlorophyll degradation. However, unlike SGR of other plant species, we found that the carotenoid and chlorophyll regulatory activities could be uncoupled in the case of certain SGR alleles in citrus and thus we propose a model for the molecular mechanism underlying the brown flavedo phenotype. The economic and nutritional value of citrus makes these findings of wide interest. The strategy implemented, and the results obtained, constitute an advance for agro-industry by driving opportunities for citrus crop improvement.


Assuntos
Carotenoides/metabolismo , Clorofila/metabolismo , Citrus sinensis/metabolismo , Frutas/metabolismo
4.
BMC Plant Biol ; 21(1): 226, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020584

RESUMO

BACKGROUND: Abscission is an active, organized, and highly coordinated cell separation process enabling the detachment of aerial organs through the modification of cell-to-cell adhesion and breakdown of cell walls at specific sites on the plant body known as abscission zones. In Arabidopsis thaliana, abscission of floral organs and cauline leaves is regulated by the interaction of the hormonal peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), a pair of redundant receptor-like protein kinases, HAESA (HAE) and HAESA-LIKE2 (HSL2), and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) co-receptors. However, the functionality of this abscission signaling module has not yet been demonstrated in other plant species. RESULTS: The expression of the pair of NbenIDA1 homeologs and the receptor NbenHAE.1 was supressed at the base of the corolla tube by the inoculation of two virus-induced gene silencing (VIGS) constructs in Nicotiana benthamiana. These gene suppression events arrested corolla abscission but did not produce any obvious effect on plant growth. VIGS plants retained a higher number of corollas attached to the flowers than control plants, an observation related to a greater corolla breakstrength. The arrest of corolla abscission was associated with the preservation of the parenchyma tissue at the base of the corolla tube that, in contrast, was virtually collapsed in normal corollas. In contrast, the inoculation of a viral vector construct that increased the expression of NbenIDA1A at the base of the corolla tube negatively affected the growth of the inoculated plants accelerating the timing of both corolla senescence and abscission. However, the heterologous ectopic overexpression of citrus CitIDA3 and Arabidopsis AtIDA in N. benthamiana did not alter the standard plant phenotype suggesting that the proteolytic processing machinery was unable to yield active peptides. CONCLUSION: Here, we demonstrate that the pair of NbenIDA1 homeologs encoding small peptides of the IDA-like family and the receptor NbenHAE.1 control cellular breakdown at the base of the corolla tube awhere an adventitious AZ should be formed and, therefore, corolla abscission in N. benthamiana flowers. Altogether, our results provide the first evidence supporting the notion that the IDA-HAE/HSL2 signaling module is conserved in angiosperms.


Assuntos
Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Nicotiana/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Flores/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Alinhamento de Sequência , Transdução de Sinais/genética , Nicotiana/crescimento & desenvolvimento
5.
BMC Plant Biol ; 20(1): 34, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959115

RESUMO

BACKGROUND: IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like signaling peptides and the associated HAE (HAESA)-like family of receptor kinases were originally reported in the model plant Arabidopsis thaliana (Arabidopsis) to be deeply involved in the regulation of abscission. Actually, IDA peptides, as cell-to-cell communication elements, appear to be implicated in many developmental processes that rely on cell separation events, and even in the responses to abiotic stresses. However, the knowledge related to the molecular machinery regulating abscission in economically important crops is scarce. In this work, we determined the conservation and phylogeny of the IDA-like and HAE-like gene families in relevant species of the Solanaceae family and analyzed the expression of these genes in the allopolyploid Nicotiana benthamiana, in order to identify members involved in abscission, stem growth and in the response to drought conditions. RESULTS: The phylogenetic relationships among the IDA-like members of the Solanaceae studied, grouped the two pairs of NbenIDA1 and NbenIDA2 protein homeologs with the Arabidopsis prepropeptides related to abscission. Analysis of promoter regions searching for regulatory elements showed that these two pairs of homeologs contained both hormonal and drought response elements, although NbenIDA2A lacked the hormonal regulatory elements. Expression analyses showed that the pair of NbenIDA1 homeologs were upregulated during corolla abscission. NbenIDA1 and NbenIDA2 pairs showed tissue differential expression under water stress conditions, since NbenIDA1 homeologs were highly expressed in stressed leaves while NbenIDA2 homeologs, especially NbenIDA2B, were highly expressed in stressed roots. In non-stressed active growing plants, nodes and internodes were the tissues with the highest expression levels of all members of the IDA-like family and their putative HAE-like receptors. CONCLUSION: Our results suggest that the pair of NbenIDA1 homeologs are involved in the natural process of corolla abscission while both pairs of NbenIDA1 and NbenIDA2 homeologs are implicated in the response to water stress. The data also suggest that IDA peptides may be important during stem growth and development. These results provide additional evidence that the functional module formed by IDA peptides and its receptor kinases, as defined in Arabidopsis, may also be conserved in Solanaceae.


Assuntos
Flores/genética , Nicotiana/genética , Proteínas de Plantas/genética , Caules de Planta/genética , Flores/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Água/metabolismo
6.
Genome ; 63(9): 437-444, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32758104

RESUMO

Citrus is an extremely important genus in terms of world fruit production. Despite its economic importance and the small genome sizes of its species (2n = 18, 1C = 430 ± 68 Mbp), entire genomic assemblies have only recently become available for some of its representatives. Together with the previous CMA/DAPI banding and fluorescence in situ hybridization (FISH) in the group, these data are important for understanding the complex relationships between its species and for assisting breeding programs. To anchor genomic data with the cytogenetic map of mandarin (Citrus reticulata), the parental species of several economically important hybrids such as sweet orange and clementine, 18 BAC (bacterial artificial chromosome) clones were used. Eleven clementine BACs were positioned by BAC-FISH, doubling the number of chromosome markers so far available for BAC-FISH in citrus. Additionally, six previously mapped BACs were end-sequenced, allowing, together with one BAC previously sequenced, their assignment to scaffolds and the subsequent integration of chromosomes and the genome assembly. This study therefore established correlations between mandarin scaffolds and chromosomes, allowing further structural genomic and comparative study with the sweet orange genome, as well as insights into the chromosomal evolution of the group.


Assuntos
Mapeamento Cromossômico , Citrus/genética , Genoma de Planta , Sequenciamento Completo do Genoma , Sequência de Bases , Cruzamento , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Marcadores Genéticos , Hibridização in Situ Fluorescente , Análise de Sequência
7.
BMC Plant Biol ; 19(1): 401, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31510935

RESUMO

BACKGROUND: Small RNAs regulate a wide variety of processes in plants, from organ development to both biotic and abiotic stress response. Being master regulators in genetic networks, their biogenesis and action is a fundamental aspect to characterize in order to understand plant growth and development. Three main gene families are critical components of RNA silencing: DICER-LIKE (DCL), ARGONAUTE (AGO) and RNA-DEPENDENT RNA POLYMERASE (RDR). Even though they have been characterized in other plant species, there is no information about these gene families in Citrus sinensis, one of the most important fruit species from both economical and nutritional reasons. While small RNAs have been implicated in the regulation of multiple aspects of plant growth and development, their role in the abscission process has not been characterized yet. RESULTS: Using genome-wide analysis and a phylogenetic approach, we identified a total of 13 AGO, 5 DCL and 7 RDR genes. We characterized their expression patterns in root, leaf, flesh, peel and embryo samples using RNA-seq data. Moreover, we studied their role in fruit abscission through gene expression analysis in fruit rind compared to abscission zone from samples obtained by laser capture microdissection. Interestingly, we determined that the expression of several RNA silencing factors are down-regulated in fruit abscission zone, being particularly represented gene components of the RNA-dependent DNA Methylation pathway, indicating that repression of this process is necessary for fruit abscission to take place in Citrus sinensis. CONCLUSIONS: The members of these 3 families present characteristic conserved domains and distinct expression patterns. We provide a detailed analysis of the members of these families and improved the annotation of some of these genes based on RNA-seq data. Our data suggests that the RNA-dependent DNA Methylation pathway is involved in the important fruit abscission process in C. sinensis.


Assuntos
Citrus sinensis/fisiologia , Metilação de DNA/fisiologia , Frutas/crescimento & desenvolvimento , Genes de Plantas/fisiologia , Genoma de Planta/fisiologia , Citrus sinensis/genética , Citrus sinensis/crescimento & desenvolvimento , Frutas/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia
8.
BMC Plant Biol ; 19(1): 47, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30704398

RESUMO

BACKGROUND: Harvest time is a relevant economic trait in citrus, and selection of cultivars with different fruit maturity periods has a remarkable impact in the market share. Generation of early- and late-maturing cultivars is an important target for citrus breeders, therefore, generation of knowledge regarding the genetic mechanisms controlling the ripening process and causing the early and late phenotypes is crucial. In this work we analyze the evolution of the transcriptome during fruit ripening in 3 sport mutations derived from the Fina clementine (Citrus clementina) mandarin: Clemenules (CLE), Arrufatina (ARR) and Hernandina (HER) that differ in their harvesting periods. CLE is considered a mid-season cultivar while ARR and HER are early- and late-ripening mutants, respectively. RESULTS: We used RNA-Seq technology to carry out a time course analysis of the transcriptome of the 3 mutations along the ripening period. The results indicated that in these mutants, earliness and lateness during fruit ripening correlated with the advancement or delay in the expression of a set of genes that may be implicated in the maturation process. A detailed analysis of the transcription factors known to be involved in the regulation of fruit ripening identified a member of the MADS box family whose expression was lower in ARR, the early-ripening mutant, and higher in HER, the late-ripening mutant. The pattern of expression of this gene during the maturation period was basically contrary to those of the ethylene biosynthetic genes, SAM and ACC synthases and ACC oxidase. The gene was present in hemizygous dose in the early-ripening mutant. CONCLUSIONS: Our analysis provides new clues about the genetic control of fruit ripening in citrus and allowed the identification of a transcription factor that could be involved in the early phenotype.


Assuntos
Citrus/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Proteínas de Domínio MADS/fisiologia , Proteínas de Plantas/fisiologia , Citrus/genética , Citrus/metabolismo , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Característica Quantitativa Herdável
9.
BMC Genomics ; 19(1): 706, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30253735

RESUMO

BACKGROUND: Rice plants are sensitive to the agro-climate conditions, being photoperiod one of main factor contributing to their adaptation to the region where they are grown. Dissecting the genetic bases underlying diversity in rice populations adapted to specific environmental conditions is a fundamental resource for breeding. In this study we have analysed a collection of japonica varieties adapted to temperate regions to perform association studies with traits of high agronomical interest such as heading date, plant height, number of panicles, panicle length and number of grains per panicle. RESULTS: We have performed a genome wide association study using a panel of 1713 SNPs that, based on previous linkage disequilibrium estimations, provides a full coverage of the whole genome. We have found a total of 43 SNPs associated with variations in the different traits. The identified SNPs were distributed across the genome except in chromosome 12, where no associated SNPs were found. The inspection of the vicinity of these markers also revealed a set of genes associated with physiological functions strongly linked to agronomic traits. Of special relevance are two genes involved in gibberellin homeostasis that are associated with plant height and panicle length. We also detected novel associated sites with heading date, panicle length and number of grain per panicle. CONCLUSION: We have identified loci associated with important agronomic traits among cultivars adapted to temperate conditions. Some of these markers co-localized with already known genes or QTLs, but the association also provided novel molecular markers that can be of help to elucidate the complicated genetic mechanism controlling important agronomic traits, as flowering regulation in the non-dependent photoperiod pathway. The detected associated markers may provide important tools for the genetic improvement of rice cultivars in temperate regions.


Assuntos
Oryza/genética , Agricultura , Clima , Estudo de Associação Genômica Ampla , Oryza/anatomia & histologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
10.
Mol Biol Evol ; 32(8): 2015-35, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25873589

RESUMO

Citrus genus includes some of the most important cultivated fruit trees worldwide. Despite being extensively studied because of its commercial relevance, the origin of cultivated citrus species and the history of its domestication still remain an open question. Here, we present a phylogenetic analysis of the chloroplast genomes of 34 citrus genotypes which constitutes the most comprehensive and detailed study to date on the evolution and variability of the genus Citrus. A statistical model was used to estimate divergence times between the major citrus groups. Additionally, a complete map of the variability across the genome of different citrus species was produced, including single nucleotide variants, heteroplasmic positions, indels (insertions and deletions), and large structural variants. The distribution of all these variants provided further independent support to the phylogeny obtained. An unexpected finding was the high level of heteroplasmy found in several of the analyzed genomes. The use of the complete chloroplast DNA not only paves the way for a better understanding of the phylogenetic relationships within the Citrus genus but also provides original insights into other elusive evolutionary processes, such as chloroplast inheritance, heteroplasmy, and gene selection.


Assuntos
Citrus/genética , DNA de Cloroplastos/genética , Genoma de Cloroplastos/fisiologia , Filogenia , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA