RESUMO
Bile acids, the endogenous steroid nucleus containing signaling molecules, are responsible for the regulation of multiple metabolic processes, including lipoprotein and glucose metabolism to maintain homeostasis. Within our body, they are directly produced from their immediate precursors, cholesterol C (low-density lipoprotein C, LDL-C), through the enzymatic catabolic process mediated by 7-α-hydroxylase (CYP7A1). Bile acid sequestrants (BASs) or amphiphilic resins that are nonabsorbable to the human body (being complex high molecular weight polymers/electrolytes) are one of the classes of drugs used to treat hypercholesterolemia (a high plasma cholesterol level) or dyslipidemia (lipid abnormalities in the body); thus, they have been used clinically for more than 50 years with strong safety profiles as demonstrated by the Lipid Research Council-Cardiovascular Primary Prevention Trial (LRC-CPPT). They reduce plasma LDL-C and can slightly increase high-density lipoprotein C (HDL-C) levels, whereas many of the recent clinical studies have demonstrated that they can reduce glucose levels in patients with type 2 diabetes mellitus (T2DM). However, due to higher daily dosage requirements, lower efficacy in LDL-C reduction, and concomitant drug malabsorption, research to develop an "ideal" BAS from sustainable or natural sources with better LDL-C lowering efficacy and glucose regulations and lower side effects is being pursued. This Review discusses some recent developments and their corresponding efficacies as bile removal or LDL-C reduction of natural biopolymer (polysaccharide)-based compounds.
Assuntos
Anticolesterolemiantes , Diabetes Mellitus Tipo 2 , Hipercolesterolemia , Anticolesterolemiantes/uso terapêutico , Ácidos e Sais Biliares/uso terapêutico , Biopolímeros , Colesterol , LDL-Colesterol/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucose/uso terapêutico , Humanos , Hipercolesterolemia/tratamento farmacológico , Hipolipemiantes/uso terapêuticoRESUMO
Emulsifier design is one of the key strategies in interfacial engineering for emulsion stability. In this study, cellulose nanocrystals (CNCs) were used as an interfacial stabilizer to improve the stability of coconut oil (CO)-in-water emulsions. A Pickering emulsion consisting of CO and water was optimized based on four parameters using the response surface methodology and the central composite design. The droplet coverage remained stable during the crystallization of the oil phase when the temperature was reduced below the melting temperature of CO. Fluorescent-labeled CNCs were used to monitor the partitioning of CNC at the O/W interface during the crystallization of CO. The Generation 6 polyamidoamine (G6 PAMAM) dendrimer covalently grafted on the surface of CNC was used as an intrinsic fluorescent dye. Since it displayed similar properties as the emulsifier, it could be used to monitor the CNC coverage on the oil droplets at various temperatures. The fluorescence micrographs showed that the emission of PAMAM CNCs at the O/W interface remained on both the liquid and solid CO droplets, confirming that oil crystallization did not affect the fluorescent CNC coverage on the oil droplets.
Assuntos
Celulose , Nanopartículas , Celulose/química , Emulsões/química , Nanopartículas/química , Transição de Fase , Água/químicaRESUMO
Cellulose nanocrystal (CNC) gold nanoshell was prepared using a polymer-coated CNC as a template. A seed-mediated shell growth approach (ex situ) was employed, gold nanoparticles (AuNPs) of two sizes were prepared, and the effect of the size of AuNP on the shell quality (smoothness, evenness, and continuity) was elucidated. Additionally, a novel one-pot synthesis approach (in situ) was evaluated for the preparation of the gold nanoshell, where polymer-coated CNCs with adsorbed ascorbic acid were used to reduce Au ions to form a metallic gold shell on CNC. The surface coverage was manipulated by adding different amounts of plating solutions. The formation and morphology of gold nanoshells were evaluated by zeta potential measurements, dynamic light scattering, UV-vis spectroscopy, and transmission electron microscopy (TEM). The catalytic performance of the CNC-gold nanostructures for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) was governed by the surface area of gold shells.
RESUMO
Understanding of the temperature-induced phase transition of poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) random copolymers with varied composition remains largely incomplete. Upon heating they can form either macroscopically phase-separated aggregates or micelles. We examined the effect of polymer architecture by rationally designing and synthesizing various POEGMA copolymer structures via atom transfer radical polymerization using OEGMA monomers of different EO lengths. Micelle formation occurred for copolymers with a small fraction of long side chains counterbalanced by an appropriate number of short side chains, while macroscopic phase separation occurred for other copolymer compositions. In some copolymer compositions and architectures, micelle formation followed by macroscopic phase separation occurred, and the temperature of these phase transitions could be tailored accordingly. This new strategy allows the control over the microstructure and specific transition temperatures enabling, for instance, the preparation of nanocarriers for encapsulating hydrophobic compounds.
RESUMO
Efficient non-viral gene delivery is highly desirable but often unattainable with some cell-types. We report here that non-viral DNA polyplexes can efficiently transfect differentiated neuronal and stem cells. Polyplex transfection centrifugation protocols was enhanced by including a simultaneous treatment with a DOPE/CHEMS lipid suspension and a microtubule inhibitor, Tubastatin A. Lipoplex transfection protocols were not improved by this treatment. This mechanism of action was unravelled by systematically identifying and rationally mitigating barriers limiting high transfection efficiency, allowing unexpected improvements in the transfection of mesenchymal stem cells (MSC), primary neuron and several hard-to-transfect cell types beyond what are currently achievable using cationic polymers. The optimized formulation and method achieved high transfection efficiency with no adverse effects on cell viability, cell proliferation or differentiation. High efficiency modification of MSC for cytokine overexpression, efficient generation of dopaminergic neuron using neural stem cells and enhanced genome editing with CRISPR-Cas9 were demonstrated. In summary, this study described a cost-effective method for efficient, rapid and scalable workflow for ex vivo gene delivery using a myriad of nucleic acids including plasmid DNA, mRNA, siRNA and shRNA.
Assuntos
Endossomos/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Transfecção/métodos , Tubulina (Proteína)/metabolismo , Acetilação , Animais , Transporte Biológico , Diferenciação Celular , Linhagem Celular , Células Cultivadas , DNA/análise , Concentração de Íons de Hidrogênio , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Camundongos , Células-Tronco Neurais/citologia , Polímeros/químicaRESUMO
Sulfated cellulose nanocrystals (CNC) with high surface charge density are inadequate for stabilizing oil-water emulsions, which limits their applications as interfacial stabilizers. We performed end-group modification by introducing hydrophobic chains (polystyrene) to CNC. Results showed that the modified CNC are more effective in emulsifying toluene and hexadecane than pristine CNC. Various parameters were investigated, such as concentration of particles, electrolytes, and polarity of solvents on the characteristics of the emulsions. This study provides strategies for the modification of cellulose nanocrystals to yield amphiphilic nanoparticles that enhance the stability of emulsions. Such systems, bearing biocompatible and environmentally friendly characteristics, are attractive for use in a wide range of industries spanning food, biomedicine, pharmaceuticals, cosmetics, and petrochemicals.
RESUMO
We report a comprehensive study on the interactions between cationic surfactant homologues CnTAB (n = 12, 14, and 16) with negatively charged cellulose nanocrystals (CNCs). By combining different techniques, such as isothermal titration calorimetry (ITC), surface tension, light scattering, electrophoretic mobility, and fluorescence anisotropy measurements, we identified two different driving forces for the formation of surface induced micellar aggregates. For the C12TAB surfactant, a surfactant monolayer with the alkyl chains exposed to the water is formed via electrostatic interactions at low concentration. At a higher surfactant concentration, micellar aggregates are formed at the CNC surface. For the C14TAB and C16TAB systems, micellar aggregates are formed at the CNC surface at a much lower surfactant concentration via electrostatic interactions, followed by hydrophobic interactions between the alkyl chains. At higher surfactant concentration, charge neutralization and association of the surfactant decorated CNC aggregates led to flocculation.
Assuntos
Celulose/química , Compostos de Cetrimônio/química , Nanopartículas/química , Tensoativos/química , Calorimetria , Cetrimônio , Polarização de Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Micelas , Eletricidade Estática , Tensão Superficial , Termodinâmica , Água/químicaRESUMO
Cellulose nanocrystals with grafted binary polymer brushes (CNC-BPB), poly(oligoethylene glycol) methacrylate (POEGMA) and poly(methacrylic acid) (PMAA), were prepared by cerium-mediated polymerization in aqueous solution. The physical properties of CNC-BPB can be controlled by external triggers, such as temperature and pH, which can be utilized to stabilize and destabilize oil-water emulsions. By virtue of the modifications, these bifunctionalized CNCs diffused to the oil-water interface and stabilized the oil droplets at high pHs. When the pH was lowered to 2, strong hydrogen bonding between POEGMA and PMAA chains grafted on the CNC induced the coalescence of the emulsion droplets, resulting in the phase separation of oil and water. For emulsions stabilized by CNC-POEGMA and free PMAA mixtures, instantaneous coalescence was not observed at low pHs. Successive stabilization-destabilization over 5 cycles was demonstrated by modulating the pH with the addition of acid or base without any loss in efficiency. This work demonstrates that functional sustainable nanomaterials can be used for small scale oil-water separations, particularly for oil droplet transportation and harvesting of lipophilic compounds.
Assuntos
Celulose/química , Nanopartículas/química , Óleos/isolamento & purificação , Polímeros/química , Tensoativos/química , Água/química , Emulsões , Metacrilatos , Óleos/química , Polimerização , TemperaturaRESUMO
The interactions between a series of poly(ethylene oxide)s covalently labeled at both ends with pyrene pendants (PEO(X)-Py2, where X represents the number-average molecular weight of the PEO chains and equals 2K, 5K, 10K, and 16.5K) and an ionic surfactant, namely, sodium dodecyl sulfate (SDS), in water were investigated at a fixed pyrene concentration of 2.5 µM corresponding to polymer concentrations smaller than 21 mg/L and with an SDS concentration range between 5 × 10(-6) and 0.02 M, thus encompassing the 8 mM critical micelle concentration (CMC) of SDS in water. The steady-state fluorescence spectra showed that the I1/I3 ratio decreased from 1.73 ± 0.06 for SDS concentration smaller than 2 mM where pyrene was exposed to water to 1.43 ± 0.03 for SDS concentration greater than 6 mM where pyrene was incorporated inside SDS micelles. The ratio of excimer-to-monomer emission intensities (the IE/IM ratio) of all PEO(X)-Py2 samples remained constant at low SDS concentrations, then increased, passed through a maximum at the same SDS concentration of 4 mM before decreasing to a plateau value that is close to zero for PEO(10K)-Py2 and PEO(16.5K)-Py2 but nonzero for PEO(2K)-Py2 and PEO(5K)-Py2. The pyrene end groups of these two latter samples could not bridge two different micelles due to the short PEO chain, and excimer was formed by intramolecular diffusion inside the same SDS micelle. Time-resolved fluorescence decays of the pyrene monomer and excimer of the PEO(X)-Py2 samples were acquired at various SDS concentrations and globally fitted according to the "Model Free" analysis over the entire range of SDS concentration. The molar fractions of various excited pyrene species and the rate constant of pyrene excimer formation retrieved from the analysis of fluorescence decays were obtained as a function of SDS concentration. Interactions between SDS and PEO could not be detected by isothermal titration calorimetry, potentiometry with a surfactant selective electrode, and conductance measurements.
RESUMO
A weak polyelectrolyte, poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA), was grafted onto the surface of cellulose nanocrystals via free radical polymerization. The resultant suspension of PDMAEMA-grafted-cellulose nanocrystals (PDMAEMA-g-CNC) possessed pH-responsive properties. The grafting was confirmed by FTIR, potentiometric titration, elementary analysis, and thermogravimetric analysis (TGA); the surface and interfacial properties of the modified particles were characterized by surface tensiometer. Compared to pristine cellulose nanocrystals, modified CNC significantly reduced the surface and interfacial tensions. Stable heptane-in-water and toluene-in-water emulsions were prepared with PDMAEMA-g-CNC. Various factors, such as polarity of solvents, concentration of particles, electrolytes, and pH, on the properties of the emulsions were investigated. Using Nile Red as a florescence probe, the stability of the emulsions as a function of pH and temperature was elucidated. It was deduced that PDMAEMA chains promoted the stability of emulsion droplets and their chain conformation varied with pH and temperature to trigger the emulsification and demulsification of oil droplets. Interestingly, for heptane system, the macroscopic colors varied depending on the pH condition, while the color of the toluene system remained the same. Reversible emulsion systems that responded to pH were observed and a thermoresponsive Pickering emulsion system was demonstrated.
Assuntos
Celulose/química , Metacrilatos/química , Nanopartículas/química , Nylons/química , Polímeros/química , Eletrólitos/química , Emulsões , Concentração de Íons de Hidrogênio , Polimerização , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Água/químicaRESUMO
Mucoadhesion can be exploited as a strategy to target drug and nutrient delivery to the outer mucosal layers of fish in aquaculture farms. Cellulose nanocrystals (CNC) derived from cellulose pulp fibers can interact with the mucosal membranes via hydrogen bonding, however, their mucoadhesive properties are weak and should be enhanced. In this study, CNC were coated with tannic acid (TA), a plant polyphenol with excellent wet-resistant bioadhesive properties, to strengthen their mucoadhesive capability. The optimal CNC:TA mass ratio was determined to be 20:1. The modified CNCs were 190 ± 40 nm in length and 21 ± 4 nm wide and displayed excellent colloidal stability, with a zeta potential of -35 mV. Turbidity titrations and rheological measurements revealed that the modified CNC possessed superior mucoadhesive properties compared to pristine CNC. Modification with tannic acid introduced additional functional groups for stronger hydrogen bond formation and hydrophobic interactions with mucin, which was confirmed by a large reduction in viscosity enhancement values in the presence of chemical blockers (urea and Tween80). The enhanced mucoadhesion of the modified CNC could be utilized for the fabrication of a mucoadhesive drug delivery system to promote sustainable aquaculture practices.
Assuntos
Celulose , Nanopartículas , Animais , Celulose/química , Nanopartículas/química , Interações Hidrofóbicas e Hidrofílicas , Viscosidade , AquiculturaRESUMO
Antibacterial biodegradable plastics are highly demanded for food package and disposable medical plastic consumables. Incorporating antibacterial nanoagents into polymer matrices is an effective method to endow polymers with antibacterial activity. However, synthesis of sustainable antibacterial nanoagents with high antibacterial activity via facile approach and well dispersion of them in polymer matrices are still challenging. In this study, polyethyleneimine (PEI) was grafted on surface of cellulose nanocrystals (CNCs) via the oxidation self-polymerization of dopamine (DA) and the Michael addition/Schiff base reaction between DA and PEI. The resulted PEI and polydopamine modified CNCs (PPCs) showed substantially enhanced antibacterial activity and reduced cytotoxicity for NIH3T3 than PEI due to increased local concentration and anchoring of PEI. The minimum concentration of PPCs to achieve antibacterial rate of 99.99 % against S. aureus and E. coli were about 50 and 20 µg/mL, respectively. PPCs displayed outstanding emulsifying ability, and PPC coated polylactic acid (PLA) microspheres were obtained by drying PPC stabilized PLA Pickering emulsion, leading to a well dispersion of PPCs in PLA. PPC/PLA film prepared by hot-pressing displayed great antibacterial performance and enhanced mechanical properties. Therefore, this study proposed a facile approach to fabricate biocompatible antibacterial nanoagents and plastics.
Assuntos
Nanopartículas , Polietilenoimina , Animais , Camundongos , Emulsões/química , Escherichia coli , Staphylococcus aureus , Células NIH 3T3 , Polímeros , Celulose/química , Poliésteres/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/químicaRESUMO
Pickering emulsion stabilized by cellulose nanocrystals (CNCs) during the phase transition of the dispersed oil is poorly understood. We investigated the capability of CNC in stabilizing Pickering emulsions during the temperature-induced phase transition. Paraffin wax emulsions stabilized by sodium dodecyl sulfate (SDS) were less stable than CNC stabilized emulsions. The relationship between droplet size and emulsifier content was examined, and a new model describing this relationship is proposed. The droplet size of CNC-based systems was not affected by temperature variation, even at low CNC concentrations. The minimum CNC content required to stabilize the paraffin wax emulsion was lower than SDS. DSC results indicated that higher droplet surface coverage with emulsifiers enhanced the deformation resistance of the crystallized droplets, which enhanced the emulsion stability. Temperature sweep viscosity measurements showed that the stability of CNC-based systems was not significantly impacted by the phase transition of the paraffin wax. Rheological amplitude sweep analysis indicated that emulsions above the melting point of paraffin wax were more stable at all strain levels. However, the SDS-based systems displayed substantial heterogeneity after the liquid-solid transition. Frequency sweep tests revealed that CNC-stabilized emulsions were more stable than SDS-stabilized emulsions.
Assuntos
Nanopartículas , Parafina , Celulose/química , Emulsificantes , Emulsões/química , Nanopartículas/química , Transição de FaseRESUMO
There is a growing interest in the synthesis of electrically conductive cellulose nanocrystal (CNC) for advanced applications, such as supercapacitor, batteries, sensor, and printed electronics. CNC is recognized as an attractive template for the fabrication of functional nanomaterials. Since CNC possesses many attractive properties, it is a sustainable template to prepare conductive nanomaterials, by either coating it with a conductive material or transforming it into carbon nanorods. This review summarizes the utilization of a sustainable and low-cost CNC to produce conductive nanocomposites via an environmentally friendly process. Electroconductive CNCs with enhanced electrical properties, lower electrical percolation threshold, and better mechanical properties can be produced and are attractive systems for many new applications.
Assuntos
Nanocompostos , Nanopartículas , Metabolismo dos Carboidratos , Celulose/química , Condutividade Elétrica , Nanocompostos/química , Nanopartículas/químicaRESUMO
Effective aquaculture management strategies are paramount to global food security. Growing demands stimulate the intensification of production and create the need for practices that are both economically viable and environmentally sustainable. Importantly, pathogenic microbes continue to be detrimental to fish growth and survival. In terms of host health, the intestinal mucosa and its associated consortium of microbes have a critical role in modulating fitness and present an attractive opportunity to promote health at this interface. In light of this, the administration of probiotic microorganisms is being considered as a means to restore and sustain health in fish. Current evidence suggests that certain probiotic strains might be able to augment immunity, enhance growth rate and protect against infection in salmonids, the most economically important family of farmed finfish. This review affirms the relevance of host-microbe interactions in salmonids in light of emerging evidence, with an emphasis on intestinal health. In addition, the current understanding of the mode of action of probiotics in salmonid fish is discussed, along with delivery systems that can effectively carry the living microbes.
Assuntos
Aquicultura , Interações entre Hospedeiro e Microrganismos , Probióticos , AnimaisRESUMO
Vitamin C (VC), widely used in food, pharmaceutical and cosmetic products, is susceptible to degradation, and new formulations are necessary to maintain its stability. To address this challenge, VC encapsulation was achieved via electrostatic interaction with glycidyltrimethylammonium chloride (GTMAC)-chitosan (GCh) followed by cross-linking with phosphorylated-cellulose nanocrystals (PCNC) to form VC-GCh-PCNC nanocapsules. The particle size, surface charge, degradation, encapsulation efficiency, cumulative release, free-radical scavenging assay, and antibacterial test were quantified. Additionally, a simulated human gastrointestinal environment was used to assess the efficacy of the encapsulated VC under physiological conditions. Both VC loaded, GCh-PCNC, and GCh-Sodium tripolyphosphate (TPP) nanocapsules were spherical with a diameter of 450 â± â8 and 428 â± â6 ânm respectively. VC-GCh-PCNC displayed a higher encapsulation efficiency of 90.3 â± â0.42% and a sustained release over 14 days. The release profiles were fitted to the first-order and Higuchi kinetic models with R2 values greater than 0.95. VC-GCh-PCNC possessed broad-spectrum antibacterial activity with a minimum inhibition concentration (MIC) of 8-16 âµg/mL. These results highlight that modified CNC-based nano-formulations can preserve, protect and control the release of active compounds with improved antioxidant and antibacterial properties for food and nutraceutical applications.
RESUMO
Poly(ethylene glycol)-grafted-poly(amido amine) (PEGylated-PAMAM) dendrimers have attracted increasing amounts of attention because of their improved stability, toxicity, and better particle drug leakage property. The complexation of α-cyclodextrin (α-CD) with grafted PEG segments on the surface of PAMAM dendrimers was elucidated by light scattering and titration calorimetry. At pH 10, complexation between α-CD and PEGylated-PAMAM occurred once α-CD was titrated into the PAMAM solution. We observed for the first time a unique phenomenon at pH 2, where no binding took place until a critical α-CD concentration (C*) of â¼8.0 mM was reached. The size of the nanostructures increased from 6.7 to 57.6 nm when the α-CD concentration was increased from 0.5 to 15 mM at pH 2. The zeta potential of PEGylated-PAMAM at pH 2 was +6.7 mV. Thus, the dendrimers possessed positive charges attributed to the protonation of primary amine groups on PAMAM chains that impart electrostatic repulsive forces to the system. The morphology of the complex is expected to be different at two different pH values (2 and 10) because the former produces a clear solution and the latter forms a turbid solution with white precipitates.
Assuntos
Química/métodos , Dendrímeros/química , Polietilenoglicóis/química , alfa-Ciclodextrinas/química , Aminas/química , Calorimetria , Sistemas de Liberação de Medicamentos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Luz , Espalhamento de Radiação , Eletricidade EstáticaRESUMO
2-Vinylpyridine (2VP) was copolymerized with four different cross-linker densities ranging from 0.05 to 0.31 wt % divinylbenzene (DVB) via aqueous emulsion polymerization to produce a series of submicrometer-sized, lightly cross-linked P2VP latexes. Protonation of the 2VP residues leads to a latex-to-microgel transition due to interchain electrostatic repulsion, as confirmed by dynamic light scattering. The DVB content of these pH-responsive copolymer particles strongly affects their rheological behavior. The particle size and viscosity of the swollen cationic microgels exhibit a maximum at approximately 0.11 wt % DVB. Static light scattering results confirm this density as the minimum amount of DVB required to ensure that all P2VP chains are cross-linked (i.e. that there is no soluble fraction), thus allowing optimal swelling of the microgels. Viscosity studies shows that the solution viscosity of a P2VP microgel at low pH follows two models, depending on its concentration. For volume fractions below 0.30, the P2VP microgels behave as hard spheres, as predicted by the Batchelor equation. For more concentrated P2VP microgels (volume fractions above 0.30), the rheological behavior can be predicted using the Krieger-Dougherty model for strong particle-particle interactions; thus, this semiempirical approach provides a useful description of the aqueous solution behavior of microgel.
RESUMO
Cationic and thermo-responsive polymer brushes were grafted from the surface of cellulose nanocrystals. Di(ethylene glycol) methyl ether methacrylate (MEO2MA) and poly(oligoethylene glycol) methyl ether acrylate (OEGMA300) and (2-methacryloyloxyethyl) trimethylammonium chloride (DMC) were grafted from cellulose nanocrystals (CNCs) via free radical polymerization. The CNC-g-POEGMA (CP) possessed a tunable lower critical solution temperature (LCST) of about 50 °C, and cloud point measurements confirmed that the LCST of the nanoparticles could be manipulated within the range of 40-47 °C by adjusting the DMC content. The salt effect was also investigated, and the results revealed a typical salting-out effect for the CNC-g-POEGMA after the introduction of KCl. On the other hand, the CNC-g-POEGMA-g-DMC (CPD) copolymers displayed two salt-responsive characteristics; polyelectrolyte effect at lower salt concentrations, followed by the salting-out effect at higher salt concentrations, which is dependent on the DMC content.
RESUMO
HYPOTHESIS: Hydrophobic oleic acid/water interfaces are negatively charged. Hence, the use of cationic nanocelluloses as stabilizers of Pickering emulsions could improve the colloidal stability due to the electrostatic complexation at the oil-water interface. EXPERIMENTS: Two cationic nanofibrillated cellulose (cNFCs) with two degrees of substitution were prepared and used as stabilizers of Pickering emulsions. The adsorption of cNFCs at the oil: water interface was evaluated by interfacial tension, atomic force microscopy, and centrifugation measurements. LUMiSizer and optical microscopy techniques were used to analyze the colloidal stability and oil droplets morphology, respectively. Besides, the rheological behavior of the continuous aqueous phase was determined through flow and stress sweep curves. Finally, the dispersion of cNFCs in a diluted emulsion was visualized by cryogenic transmission electron microscopy (cryo-TEM). FINDINGS: Cationic NFCs were more efficient in partitioning to the oil:water interface compared to their anionic analogous, oCNF. The electrostatic attraction between the positively charged trimethylammonium groups and the negatively charged deprotonated oleic acid reduced the interfacial tension and improved the colloidal stability of O/W Pickering emulsions. cNFCs dispersed in the aqueous phase were found to increase the viscosity, decelerating the oil drops coalescence. Therefore, the stabilization of cNFCs Pickering emulsions had a synergistic effect from the electrostatic complexation at the liquid-liquid interface and network formation in the aqueous phase, as visualized by cryo-TEM.