Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 740, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460613

RESUMO

Impaired autophagy promotes Inflammatory Bowel Disease (IBD). Claudin-2 is upregulated in IBD however its role in the pathobiology remains uncertain due to its complex regulation, including by autophagy. Irrespective, claudin-2 expression protects mice from DSS colitis. This study was undertaken to examine if an interplay between autophagy and claudin-2 protects from colitis and associated epithelial injury. Crypt culture and intestinal epithelial cells (IECs) are subjected to stress, including starvation or DSS, the chemical that induces colitis in-vivo. Autophagy flux, cell survival, co-immunoprecipitation, proximity ligation assay, and gene mutational studies are performed. These studies reveal that under colitis/stress conditions, claudin-2 undergoes polyubiquitination and P62/SQSTM1-assisted degradation through autophagy. Inhibiting autophagy-mediated claudin-2 degradation promotes cell death and thus suggest that claudin-2 degradation promotes autophagy flux to promote cell survival. Overall, these data inform for the previously undescribed role for claudin-2 in facilitating IECs survival under stress conditions, which can be harnessed for therapeutic advantages.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , Claudina-2/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Mucosa Intestinal/metabolismo , Colite/metabolismo , Autofagia/fisiologia , Doenças Inflamatórias Intestinais/metabolismo
2.
J Clin Invest ; 133(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815870

RESUMO

Patients with inflammatory bowel disease (IBD) are susceptible to colitis-associated cancer (CAC). Chronic inflammation promotes the risk for CAC. In contrast, mucosal healing predicts improved prognosis in IBD and reduced risk of CAC. However, the molecular integration among colitis, mucosal healing, and CAC remains poorly understood. Claudin-2 (CLDN2) expression is upregulated in IBD; however, its role in CAC is not known. The current study was undertaken to examine the role for CLDN2 in CAC. The AOM/DSS-induced CAC model was used with WT and CLDN2-modified mice. High-throughput expression analyses, murine models of colitis/recovery, chronic colitis, ex vivo crypt culture, and pharmacological manipulations were employed in order to increase our mechanistic understanding. The Cldn2KO mice showed significant inhibition of CAC despite severe colitis compared with WT littermates. Cldn2 loss also resulted in impaired recovery from colitis and increased injury when mice were subjected to intestinal injury by other methods. Mechanistic studies demonstrated a possibly novel role of CLDN2 in promotion of mucosal healing downstream of EGFR signaling and by regulation of Survivin expression. An upregulated CLDN2 expression protected from CAC and associated positively with crypt regeneration and Survivin expression in patients with IBD. We demonstrate a potentially novel role of CLDN2 in promotion of mucosal healing in patients with IBD and thus regulation of vulnerability to colitis severity and CAC, which can be exploited for improved clinical management.


Assuntos
Neoplasias Associadas a Colite , Colite , Doenças Inflamatórias Intestinais , Animais , Humanos , Camundongos , Claudina-2/genética , Claudina-2/metabolismo , Colite/induzido quimicamente , Colite/complicações , Colite/genética , Neoplasias Associadas a Colite/complicações , Neoplasias Associadas a Colite/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Survivina/metabolismo
3.
Biotechniques ; 71(3): 456-464, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34392706

RESUMO

The conventional orthotopic/xenograft models or genetically engineered murine models of colon cancer (CRC) are limited in their scope for a true understanding of tumor growth, progression and eventual metastasis in its natural microenvironment. In the currently used murine models of CRC metastasis, the metastasis occurs primarily in the liver, though lung metastasis accounts for a significant proportion of CRC metastasis. There is an urgent need for a murine model of CRC, which not only allows tumor progression in the colonic mucosa but also metastasis of the lung. The authors describe a minimally invasive murine model of colon cancer progression that may be ideal for a wide range of applications, including evaluating gene function, microenvironment, cancer metastasis and therapeutic translational research.


Assuntos
Neoplasias do Colo , Neoplasias Pulmonares , Transplante de Neoplasias , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Colonoscopia , Modelos Animais de Doenças , Neoplasias Pulmonares/secundário , Camundongos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA