Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Soft Matter ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016625

RESUMO

Ion gels, polymer networks swollen by ionic liquids, are expected to be applied to wearable devices that are tolerant to repeated stretching. High strength and excellent stretchability was achieved due to the numerous physical cross-links with abundant polymer chain entanglements in addition to a small number of immobile chemical cross-links, even though the ion gel was prepared by a facile methodology.

2.
Chem Rec ; 23(8): e202300043, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37068193

RESUMO

Ion gels are an emerging class of polymer gels in which a three-dimensional polymer network swells with an ionic liquid. Ion gels have drawn considerable attention in various fields such as energy and biotechnology owing to their excellent properties including nonvolatility, nonflammability, high ionic conductivity, and high thermal and electrochemical stability. Since the first report on ion gels (published ∼30 years ago), diverse functional ion gels exhibiting impressive physicochemical properties have been reported. In this review, recent developments in functional ion gels that can modulate their physical properties in response to environmental conditions are outlined. Stimuli-responsive ion gels that can adaptively undergo phase transitions in response to thermal and light stimuli are initially discussed, followed by an evaluation of diverse self-healing ion gels that can spontaneously mend mechanical damage through judiciously designed ion-gel networks.

3.
Soft Matter ; 18(45): 8582-8590, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36367165

RESUMO

A new class of ion gels, termed ultrahigh molecular weight (UHMW) gels, formed by physical entanglement of ultrahigh molecular weight polymers in ionic liquids, are synthesised using facile one step radical polymerisation with significantly low initiator conditions, and exhibit superior mechanical characteristics such as stretchability, recyclability, and room temperature self-healing ability. In this study, UHMW gels are synthesised using various combinations of monomer and IL structures, and the effect of their chemical structures on the physicochemical properties of UHMW gels are thoroughly investigated. UHMW polymers are prepared in situ for all combinations of ILs and monomers used in this study, indicating the wide applicability of this fabrication strategy. The structure-property relationships between chemical structures and mechanical properties of UHMW gels are investigated in detail. Furthermore, the differences in self-healing efficiency of UHMW gels depending on the chemical structure is discussed in terms of individual polymer conformation and polymer-polymer interaction based on molecular dynamics simulations.

4.
Sci Technol Adv Mater ; 21(1): 388-401, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32939164

RESUMO

Ion gels, soft materials that contain ionic liquids (ILs), are promising gel electrolytes for use in electrochemical devices. Due to the recent surge in demand for flexible and wearable devices, highly durable ion gels have attracted significant amounts of attention. In this review, we address recent advances in the development of ion gels that can heal themselves when mechanically damaged. Light- and thermally induced healing of ion gels are discussed as stimuli-responsive healing strategies, after which self-healable ion gels based on supramolecular and dynamic covalent chemistry are addressed. Tough, highly stretchable, and self-healable ion gels have recently been fabricated through the judicious design of polymer nanostructures in ILs in which polymer chains and IL cations and anions interact. The applications of self-healable ion gels to electrochemical devices are also briefly discussed.

5.
Angew Chem Int Ed Engl ; 59(10): 3871-3875, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31916336

RESUMO

Various biological behaviors are fueled by "respiration", which is an example of catabolism. So far, we have reported various self-oscillating soft materials exhibiting bioinspired dynamic movements. These autonomous polymer systems are driven by the Belousov-Zhabotinsky (BZ) reaction, which is analogous to the tricarboxylic acid (TCA) cycle that is an integral part of respiration. However, in the BZ reaction, the external addition of an oxidizing agent is necessary to initiate the oxidation process, which is realized by intracellular moieties such as ubiquinone in living systems. Herein, we realized self-oscillating micelles that are driven without the external addition of an oxidizing agent. This was achieved by embedding the oxidizing source into the structure of the self-oscillating AB diblock copolymers. This strategy introduces a new function equivalent to intracellular oxidizing moieties, and is useful for the design of completely autonomous bioinspired materials.

6.
Langmuir ; 34(4): 1673-1680, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29281793

RESUMO

We have developed a novel polymer brush surface exhibiting autonomous swelling-deswelling changes driven by the Belousov-Zhabotinsky (BZ) reaction, that is, the self-oscillating polymer brush. In this system, the ruthenium tris(2,2'-bipyridine) [Ru(bpy)3] catalyst-conjugated polymer chains are densely packed on the solid substrate. It is expected that the BZ reaction in the polymer brush would be influenced by the immobilization effect of the catalyst. To clarify the effect of the immobilization of the catalyst on the self-oscillating polymer brush, the self-oscillating behavior of the polymer brush was investigated by comparing it with that of other self-oscillating polymer materials, the free polymer, and the gel particle under various initial substrate concentrations. The initial substrate dependency of the oscillating period for the polymer brush was found to be different from those for the free polymer and the gel particle. Furthermore, the oscillatory waveform was analyzed on the basis of the Field-Körös-Noyes model. These investigations revealed that the dense immobilization of the self-oscillating polymer on the surface restricted accessibility for the Ru(bpy)3 moiety. These findings would be helpful in understanding the reaction-diffusion mechanism in the polymer brush, which is a novel reaction medium for the BZ reaction.

7.
Soft Matter ; 14(45): 9088-9095, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30221301

RESUMO

A photo/thermoresponsive ABC triblock copolymer-based ion gel exhibiting photoinduced structural transitions accompanied by significant rheological changes is newly developed. The ABC triblock copolymer comprises an ionic liquid (IL)-phobic A block, an IL-philic B block, and a photo/thermoresponsive C block containing azobenzene moieties. The IL-phobic A block forms a rigid micellar core in an IL over a wide temperature range and the photo/thermoresponsive C block undergoes upper critical solution temperature (UCST)-type phase transition in ILs. In concentrated polymer solution, the ABC triblock copolymer can form a percolated micellar network at low temperatures through aggregation of A and C blocks as physical crosslinks, bridged by IL-philic B blocks. In contrast, the ion gel undergoes structural transition to jammed micelles at high temperatures due to the disassembly of the thermoresponsive C block, resulting in significant softening of the ion gel. Importantly, the temperature dependences of the viscoelastic properties of the ion gel differ drastically depending on photo-irradiation conditions as the photoinduced isomerization of azobenzene moieties in the C block modulates the affinity between the polymer chain and IL. Utilizing this feature, photoinduced softening/hardening of the ion gel is realized at constant temperature. This study provides a promising strategy to control the rheological properties of nonvolatile soft materials via contactless light irradiation that could be exploited in various applications such as photoresponsive soft actuators and photo-healable soft materials.

8.
Macromol Rapid Commun ; 39(9): e1700835, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29450926

RESUMO

Two complementary thermoreversible ABC triblock copolymers containing either phenylboronic acids with low pKa values or galactosyl groups in the hydrophilic B blocks are synthesized by sequential reversible addition-fragmentation chain transfer polymerization and subsequent modification of the functional groups. Both ABC triblock copolymers undergo reversible sol-to-gel transitions upon temperature change and form physically cross-linked hydrogels under physiological conditions. Furthermore, the spontaneous adhesion of these thermoreversible hydrogels via the formation of boronic esters between the phenylboronic acid and galactosyl groups under physiological conditions is realized for the first time.


Assuntos
Ácidos Borônicos/química , Polímeros/química , Açúcares/química , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas , Polietilenoglicóis/química , Polimerização , Temperatura
9.
Phys Chem Chem Phys ; 20(39): 25123-25139, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30109318

RESUMO

Ionic liquids (ILs), solely composed of cations and anions, are regarded as a novel class of promising liquids, potentially applicable to energy devices, reaction media, separation materials, etc. ILs have also attracted great attention as new media for molecular self-assembly, capable of producing novel soft materials with unique features never observed for conventional soft materials containing organic and aqueous solvents. In this review, we focus on recent developments in block copolymer (BCP) self-assembly in ILs. Self-assembled structures formed by dilute and concentrated BCP solutions in ILs are discussed in detail. Ion gels formed by BCP self-assembly have received special interest because they exhibit excellent physical properties of tunable viscoelasticity and solution processability without impairing the intrinsic properties of ILs, such as nonvolatility, nonflammability, and high ionic conductivity. Applications of ion gels based on BCP self-assembly for electric double layer capacitors, lithium-ion batteries, and electroactive soft actuators are also addressed.

10.
Angew Chem Int Ed Engl ; 57(51): 16693-16697, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30378225

RESUMO

An autonomous swelling-deswelling oscillation of polymer gels in a hydrated protic ionic liquid (PIL) as a proton source for the Belousov-Zhabotinsky (BZ) reaction is presented. Methylammonium hydrogen sulfate ([maH+ ][HSO4 - ]) was employed as the PIL because it provides stable redox oscillation in the BZ reaction. Due to the significantly higher pKa for [maH+ ][HSO4 - ] than those for conventional proton sources for the BZ reaction, chemomechanical oscillation can be expected under weaker acidic conditions. The self-oscillating polymer was designed as a ternary random copolymer of N-isopropylacrylamide, N-(3-aminopropyl)methacrylamide, and the Ru(bpy)3 moiety as a catalyst for the BZ reaction. The copolymer exhibited spontaneous soluble-insoluble oscillation in hydrated [maH+ ][HSO4 - ] containing NaBrO3 and malonic acid. Macroscopic swelling-deswelling oscillation of the porous bulk gel prepared by covalently connecting microgel particles was also observed.

11.
Angew Chem Int Ed Engl ; 57(1): 227-230, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29149465

RESUMO

Producing ionic liquids (ILs) that function as molecular trigger for macroscopic change is a challenging issue. Photoisomerization of an azobenzene IL at the molecular level evokes a macroscopic response (light-controlled mechanical sol-gel transitions) for ABA triblock copolymer solutions. The A endblocks, poly(2-phenylethyl methacrylate), show a lower critical solution temperature in the IL mixture containing azobenzene, while the B midblock, poly(methyl methacrylate), is compatible with the mixture. In a concentrated polymer solution, different gelation temperatures were observed in it under dark and UV conditions. Light-controlled sol-gel transitions were achieved by a photoresponsive solubility change of the A endblocks upon photoisomerization of the azobenzene IL. Therefore, an azobenzene IL as a molecular switch can tune the self-assembly of a thermoresponsive polymer, leading to macroscopic light-controlled sol-gel transitions.

12.
Biomacromolecules ; 18(1): 281-287, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27990808

RESUMO

In this study, we present the spontaneous adhesion of two thermoreversible physically cross-linked hydrogels via molecular recognition under a physiological condition. We successfully prepared two types of hydrogels generated using two kinds of well-defined ABA type triblock copolymers: CAT-ABA and PBA-ABA, which contain catechol and phenylboronic acid groups as functional side chains, respectively. Both types of ABA triblock copolymers were able to undergo sol-to-gel transition with the increase in temperature resulting from the formation of physical cross-links at a physiological temperature, which enables easy cell encapsulation in the hydrogel. It was determined that the cell encapsulating hydrogels exhibited spontaneous macroscopic adhesion through the formation of boronic esters between phenylboronic acid and catechol at the hydrogel interface. This novel system likely represents a promising method to construct a precisely organized, three-dimensional coculture system to enable the reconstruction of complicated tissues such as the liver in vitro.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Polímeros/química , Sobrevivência Celular , Técnicas de Cocultura , Células HeLa , Humanos , Reologia , Temperatura
13.
Soft Matter ; 13(26): 4559-4568, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28440372

RESUMO

In this study, factors controlling autonomous vesicle oscillations exhibited by self-oscillating diblock copolymers were investigated. The self-oscillating diblock copolymer contains poly(ethylene oxide) (PEO) as the hydrophilic block and a random copolymer composed of N-isopropylacrylamide (NIPAAm) with side chains of ruthenium tris(2,2'-bipyridine) (Ru(bpy)3), which catalyzes the Belousov-Zhabotinsky (BZ) reaction, as the self-oscillating block. Recently, our group has reported that a diblock copolymer exhibits a unique autonomous disintegration and reconstruction of the vesicles driven by the periodic redox changes of Ru(bpy)3 in a catalyst-free BZ reaction solution. Nevertheless, the effect of the diblock copolymer architecture on the structure of the vesicles under equilibrium conditions, as well as their oscillation properties under non-equilibrium conditions, has not been clarified thus far. Hence, self-oscillating diblock copolymers with different block lengths were systematically synthesized, and the effects of the block length and polymer concentration on the spatio-temporal vesicle structures were comprehensively discussed.

14.
Phys Chem Chem Phys ; 19(31): 20627-20634, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28737820

RESUMO

We developed a novel type of block copolymer, named the self-oscillating block copolymer, which exhibits autonomous assembly and disassembly driven by the dissipative structures formed by the oscillatory Belousov-Zhabotinsky (BZ) reaction. In a catalyst-free BZ solution, this polymer undergoes autonomous structural changes following the periodic redox changes of a metal catalyst incorporated into the polymer side chain. However, until now, a detailed study of the relationship between the dynamic structural changes and polymer solution conditions has not been conducted. We investigated the effect of substrate concentrations of the BZ reaction and the addition of salts on the equilibrium structures as well as the oscillatory properties of the self-oscillating block copolymers. We clarified that the substrate concentrations and the addition of specific salts significantly modulate dynamic assembly and disassembly of block copolymers.

15.
Chem Rec ; 16(4): 1852-67, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27265869

RESUMO

In 1996, we first reported self-oscillating polymer gels exhibiting autonomous swelling-deswelling oscillations driven by the Belousov-Zhabotinsky reaction. In contrast to conventional stimuli-responsive gels, the self-oscillating gel can autonomously and periodically change its volume in a closed solution without any external stimuli. Since the first report, the novel concept of self-oscillating gels has been expanded into various polymer and gel systems. Herein, we summarize recent advances in self-oscillating polymers and gels.

16.
Angew Chem Int Ed Engl ; 55(17): 5179-83, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-26960167

RESUMO

In living systems, there are many autonomous and oscillatory phenomena to sustain life, such as heart contractions and breathing. At the microscopic level, oscillatory shape deformations of cells are often observed in dynamic behaviors during cell migration and morphogenesis. In many cases, oscillatory behaviors of cells are not simplistic but complex with diverse deformations. So far, we have succeeded in developing self-oscillating polymers and gels, but complex oscillatory behaviors mimicking those of living cells have yet to be reproduced. Herein, we report a cell-like hollow sphere composed of self-oscillating microgels, that is, a colloidosome, that exhibits drastic shape oscillation in addition to swelling/deswelling oscillations driven by an oscillatory reaction. The resulting oscillatory profile waveform becomes markedly more complex than a conventional one. Especially for larger colloidosomes, multiple buckling and moving buckling points are observed to be analogous to cells.


Assuntos
Células Artificiais/citologia , Materiais Biomiméticos/química , Coloides/química , Géis/química , Polímeros/química , Células Artificiais/química , Biomimética/métodos , Forma Celular , Periodicidade
17.
Chaos ; 25(6): 064605, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26117130

RESUMO

We prepared AB diblock copolymer composed of hydrophilic poly(ethylene oxide) segment and self-oscillating polymer segment. In the latter segment, ruthenium tris(2,2'-bipyridine) (Ru(bpy)3), a catalyst of the Belousov-Zhabotinsky reaction, is introduced into the polymer architecture based on N-isopropylacrylamide (NIPAAm). The Ru(bpy)3 was introduced into the polymer segment by two methods; (i) direct random copolymerization (DP) of NIPAAm and Ru(bpy)3 vinyl monomer and (ii) post modification (PM) of Ru(bpy)3 with random copolymer of NIPAAm and N-3-aminopropylmethacrylamide. For both the diblock copolymers, a bistable temperature region (the temperature range; ΔTm), where the block copolymer self-assembles into micelle at reduced Ru(bpy)3(2+) state whereas it breaks-up into individual polymer chain at oxidized Ru(bpy)3(3+) state, monotonically extends as the composition of the Ru(bpy)3 increases. The ΔTm of the block copolymer prepared by PM is larger than that by DP. The difference in ΔTm is rationalized from the statistical analysis of the arrangement of the Ru(bpy)3 moiety along the self-oscillating segments. By using the PM method, the well-defined AB diblock copolymer having ΔTm (ca. 25 °C) large enough to cause stable self-oscillation can be prepared. The periodic structural transition of the diblock copolymer in a dilute solution ([Polymer] = 0.1 wt. %) is closely investigated in terms of the time-resolved dynamic light scattering technique at constant temperature in the bistable region. A macroscopic viscosity oscillation of a concentrated polymer solution (15 wt. %) coupled with the periodic microphase separation is also demonstrated.

18.
Angew Chem Int Ed Engl ; 53(42): 11248-52, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25196722

RESUMO

A large variety of synthetic vesicles has been created for potential engineering applications and as model systems which mimic living organisms. In most cases, the structure is designed to be thermodynamically stable. However, mimicking dynamic behaviors of living vesicles still remains undeveloped. Herein, we present a synthetic vesicle which shows autonomous disintegration-reconstruction cycles without any external stimuli and which is similar to those in living organisms, such as in the nuclear envelope and synaptic vesicles. The vesicle is composed of a diblock copolymer which has a hydrophilic and a thermosensitive segment. The thermosensitive segment includes a redox moiety that acts as a catalyst for an oscillatory chemical reaction and also controls the aggregation temperature of vesicles. Furthermore, autonomous fusion of vesicles is also observed during the cycles.


Assuntos
2,2'-Dipiridil/análogos & derivados , Materiais Biomiméticos/química , Biomimética/métodos , Polímeros/química , 2,2'-Dipiridil/química , Complexos de Coordenação , Interações Hidrofóbicas e Hidrofílicas , Membrana Nuclear/química , Periodicidade , Sinaptossomos/química , Temperatura , Termodinâmica
19.
J Pharm Sci ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950881

RESUMO

Although physical stability can be a critical issue during the development of amorphous solid dispersions (ASDs), there are no established protocols to predict/detect their physical stability. In this study, we have prepared fenofibrate ASDs using two representative manufacturing methods, hot-melt extrusion and spray-drying, to investigate their physical stability for one year. Intentionally unstable ASDs were designed to compare the detection power of each evaluation method, including X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and dissolution study. Each method did not provide the same judgment results on physical stability in some cases because of their different evaluation principles and sensitivity, which has been well-comprehended only for one-component glass. This study revealed that the detection powers of each evaluation method significantly depended on the manufacturing methods. DSC was an effective method to detect a small amount of crystals for both types of ASDs in a quantitative manner. Although the sensitivity of XRPD was always lower compared to that of DSC, interpretation of the data was the easiest. SEM was very effective for observing the crystallization of the small amount of drug for hot-melt extruded products, as the drug crystal vividly appeared on the large grains. The dissolution performance of spray-dried products could change even without any indication of physical change including crystallization. The advantage/disadvantage and complemental roles of each evaluation method are discussed for deeper understanding on the physical stability data of ASDs.

20.
Adv Mater ; 36(26): e2310105, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38234135

RESUMO

In sharp contrast to conventional solid/hydrogel platforms, water-immiscible liquids, such as perfluorocarbons and silicones, allow the adhesion of mammalian cells via protein nanolayers (PNLs) formed at the interface. However, fluorocarbons and silicones, which are typically used for liquid cell culture, possess only narrow ranges of physicochemical parameters and have not allowed for a wide variety of cell culturing environments. In this paper, it is proposed that water-immiscible ionic liquids (ILs) are a new family of liquid substrates with tunable physicochemical properties and high solvation capabilities. Tetraalkylphosphonium-based ILs are identified as non-cytotoxic ILs, whereon human mesenchymal stem cells are successfully cultured. By reducing the cation charge distribution, or ionicity, via alkyl chain elongation, the interface allows cell spreading with matured focal contacts. High-speed atomic force microscopy observations of the PNL formation process suggest that the cation charge distribution significantly altered the protein adsorption dynamics, which are associated with the degree of protein denaturation and the PNL mechanics. Moreover, by exploiting dissolution capability of ILs, an ion-gel cell scaffold is fabricated. This enables to further identify the significant contribution of bulk subphase mechanics to cellular mechanosensing in liquid-based culture scaffolds.


Assuntos
Líquidos Iônicos , Células-Tronco Mesenquimais , Alicerces Teciduais , Líquidos Iônicos/química , Humanos , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Adesão Celular/efeitos dos fármacos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA