Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 11726, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409821

RESUMO

Various ecological and economical concerns have spurred mankind's quest for materials that can provide enhanced weight savings and improved fuel efficiency. As part of this pursuit, we have microstructurally tailored an exceptionally high-strength titanium alloy, Ti-6Al-2Sn-4Zr-6Mo (Ti6246) through friction stir processing (FSP). FSP has altered the as-received bimodal microstructure into a unique modulated microstructure comprised of fine acicular α″-laths with nano precipitates within the laths. The sequence of phase transformations responsible for the modulated microstructure and consequently for the strength is discussed with the help of scanning electron microscopy, transmission electron microscopy, and synchrotron X-ray diffraction studies. The specific strength attained in one of the conditions is close to 450 MPa m3/mg, which is about 22% to 85% greater than any commercially available metallic material. Therefore, our novel nano particle strengthened Ti alloy is a potential replacement for many structural alloys, enabling significant weight reduction opportunities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA