Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 16(6): e1905826, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31916682

RESUMO

Periodic fluorine-doped tin oxide inverse opals (FTO IOs) grafted with CdS nanorods (NRs) and CdSe clusters are reported for improved photoelectrochemical (PEC) performance. This hierarchical photoanode is fabricated by a combination of dip-coating, hydrothermal reaction, and chemical bath deposition. The growth of 1D CdS NRs on the periodic walls of 3D FTO IOs forms a unique 3D/1D hierarchical structure, providing a sizeable specific surface area for the loading of CdSe clusters. Significantly, the periodic FTO IOs enable uniform light scattering while the abundant surrounded CdS NRs induce additional random light scattering, combining to give multiple light scattering within the complete hierarchical structure, significantly improving light-harvesting of CdS NRs and CdSe clusters. The high electron collection ability of FTO IOs and the CdS/CdSe heterojunction formation also contribute to the enhanced charge transport and separation. Due to the incorporation of these enhancement strategies in one hierarchical structure, FTO IOs/CdS NRs/CdSe clusters present an improved PEC performance. The photocurrent density of FTO IOs/CdS NRs/CdSe clusters at 1.23 V versus reversible hydrogen electrode reaches 9.2 mA cm-2 , which is 1.43 times greater than that of CdS NRs/CdSe clusters and 3.83 times of CdS NRs.

2.
Small ; 14(20): e1800395, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29665266

RESUMO

A 3D fluorine-doped SnO2 (FTO)/FTO-nanocrystal (NC)/TiO2 inverse opal (IO) structure is designed and fabricated as a new "host and guest" type of composite photoanode for efficient photoelectrochemical (PEC) water splitting. In this novel photoanode design, the highly conductive and porous FTO/FTO-NC IO acts as the "host" skeleton, which provides direct pathways for faster electron transport, while the conformally coated TiO2 layer acts as the "guest" absorber layer. The unique composite IO structure is fabricated through self-assembly of colloidal spheres template, a hydrothermal method and atomic layer deposition (ALD). Owing to its large surface area and efficient charge collection, the FTO/FTO-NC/TiO2 composite IO photoanode shows excellent photocatalytic properties for PEC water splitting. With optimized dimensions of the SnO2 nanocrystals and the thickness of the ALD TiO2 absorber layers, the 3D FTO/FTO-NC/TiO2 composite IO photoanode yields a photocurrent density of 1.0 mA cm-2 at 1.23 V versus reversible hydrogen electrode (RHE) under AM 1.5 illumination, which is four times higher than that of the FTO/TiO2 IO reference photoanode.

3.
Sci Total Environ ; 807(Pt 3): 151085, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34749966

RESUMO

Reuse of electronic wastes is a critical aspect for a more sustainable circular economy as it provides the simplest and most direct route to extend the lifespan of non-renewable resources. Herein, the distinctive surface and micro topographical features of computer electronic-plastic (E-plastic) scraps were unconventionally repurposed as a substrate material to guide the growth and differentiation of human adipose-derived mesenchymal stem cells (ADSCs). Specifically, the E-plastics were scavenged from discarded computer components such as light diffuser plate (polyacrylates), prismatic sheet (polyethylene terephthalate), and keyboards (acrylonitrile butadiene styrene) were cleaned, sterilized, and systematically characterized to determine the identity of the plastics, chemical constituents, surface features, and leaching characteristics. Multiparametric analysis revealed that all the E-plastics could preserve stem-cell phenotype and maintain cell growth over 2 weeks, rivalling the performance of commercial tissue-culture treated plates as cell culture plastics. Interestingly, compared to commercial tissue-culture treated plastics and in a competitive adipogenic and osteogenic differentiation environment, ADSCs cultured on the keyboard and light diffuser plastics favoured bone cells formation while the grating-like microstructures of the prismatic sheet promoted fat cells differentiation via the process of contact guidance. Our findings point to the real possibility of utilizing discarded computer plastics as a "waste-to-resource" material to programme stem cell fate without further processing nor biochemical modification, thus providing an innovative second-life option for E-plastics from personal computers.


Assuntos
Osteogênese , Plásticos , Diferenciação Celular , Computadores , Eletrônica , Humanos , Células-Tronco
4.
ACS Omega ; 4(7): 12049-12057, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460318

RESUMO

Withania coagulans is an Indian medicinal herb, the natural extracts of which are purported to have health-benefiting properties. In this study, the extract was encapsulated in nature-derived polymers with the aim of enhancing its bioavailability. The aqueous extract obtained from the plant W. coagulans was found to elicit the glucose-lowering effect by means of promoting insulin secretion from pancreatic ß cells. The cells treated with the extract showed a nearly 2-fold increase in insulin secretion compared to untreated cells. A delivery system for the extract was developed based on electrosprayed chitosan nanoparticles coated with food-based starch. The enteric starch coating retarded (by 2.5 times) the release of the extract in the stomach. The bioactivity of the encapsulated extract was subsequently tested in vitro on mouse-derived pancreatic ß cells, whereby the delivery system was found to promote insulin secretion. Finally, the extract-encapsulated oral delivery system was tested on diabetic mice and was validated to decrease blood glucose levels by 60%. In summary, it could be inferred that food-grade enteric-coated polysaccharide-based particles increase the bioavailability of the extracted compounds from the plant W. coagulans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA