Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(4): 2061-2072, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31904067

RESUMO

CO2 expanded organic solvents possess significant advantages in liquid-phase exfoliation to obtain monolayer/few-layer graphene from graphite. Further insights into the mechanism of graphene exfoliation in such solvents are essential to explore liquid-phase dispersion of graphene as a more potent alternative to chemical vapor deposition. In this study, dynamic processes of exfoliation and stabilization of graphene in CO2-N,N-dimethylformamide (DMF), CO2-N-methylpyrrolidone (NMP), CO2-dimethyl sulfoxide (DMSO), and CO2-ethanol (EtOH) were investigated using molecular dynamics simulations. The origin of the effect of each solvent on graphene exfoliation was analyzed quantitatively through potential mean force simulations. It has been found that the organic solvent in a CO2 expanded solvent should be chosen with proper surface tension, and there exist two different graphene exfoliation processes in the effective solvents, which can be described as "burger dissociation" and "extrusion-taking away" processes, respectively. In the former process, a characteristic "super-burger-like" conformation with a semi-exfoliated structure was formed, which was the deciding factor to obtain high ratio of monolayer/few-layer graphene in dispersion product. A theoretical explanation has also been provided at the molecular level to the earlier experimental phenomena. A predicted simulation of the CO2-3,3'-iminobis(N,N-dimethylpropylamine) (DMPA) system is also calculated. This investigation helps to avoid incompatible CO2 expanded organic solvents employed in the experimental studies and provides theoretical clues to understand the mechanism of exfoliation and stabilization of graphene in such solvents.

2.
Nanomaterials (Basel) ; 14(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38727366

RESUMO

The surface modification of amorphous carbon nanospheres (ACNs) through templates has attracted great attention due to its great success in improving the electrochemical properties of lithium storage materials. Herein, a safe methodology with toluene as a soft template is employed to tailor the nanostructure, resulting in ACNs with tunable surface pores. Extensive characterizations through transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption/desorption isotherms elucidate the impact of surface pore modifications on the external structure, morphology, and surface area. Electrochemical assessments reveal the enhanced performance of the surface-pore-modified carbon nanospheres, particularly ACNs-100 synthesized with the addition of 100 µL toluene, in terms of the initial discharge capacity, rate performance, and cycling stability. The interesting phenomenon of persistent capacity increase is ascribed to lithium ion movement within the graphite-like interlayer, resulting in ACNs-100 experiencing a capacity upswing from an initial 320 mAh g-1 to a zenith of 655 mAh g-1 over a thousand cycles at a rate of 2 C. The findings in this study highlight the pivotal role of tailored nanostructure engineering in optimizing energy storage materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA