Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(1): e2208623119, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36584300

RESUMO

Haploinsufficiency for SOX9, the master chondrogenesis transcription factor, can underlie campomelic dysplasia (CD), an autosomal dominant skeletal malformation syndrome, because heterozygous Sox9 null mice recapitulate the bent limb (campomelia) and some other phenotypes associated with CD. However, in vitro cell assays suggest haploinsufficiency may not apply for certain mutations, notably those that truncate the protein, but in these cases in vivo evidence is lacking and underlying mechanisms are unknown. Here, using conditional mouse mutants, we compared the impact of a heterozygous Sox9 null mutation (Sox9+/-) with the Sox9+/Y440X CD mutation that truncates the C-terminal transactivation domain but spares the DNA-binding domain. While some Sox9+/Y440X mice survived, all Sox9+/- mice died perinatally. However, the skeletal defects were more severe and IHH signaling in developing limb cartilage was significantly enhanced in Sox9+/Y440X compared with Sox9+/-. Activating Sox9Y440X specifically in the chondrocyte-osteoblast lineage caused milder campomelia, and revealed cell- and noncell autonomous mechanisms acting on chondrocyte differentiation and osteogenesis in the perichondrium. Transcriptome analyses of developing Sox9+/Y440X limbs revealed dysregulated expression of genes for the extracellular matrix, as well as changes consistent with aberrant WNT and HH signaling. SOX9Y440X failed to interact with ß-catenin and was unable to suppress transactivation of Ihh in cell-based assays. We propose enhanced HH signaling in the adjacent perichondrium induces asymmetrically localized excessive perichondrial osteogenesis resulting in campomelia. Our study implicates combined haploinsufficiency/hypomorphic and dominant-negative actions of SOX9Y440X, cell-autonomous and noncell autonomous mechanisms, and dysregulated WNT and HH signaling, as the cause of human campomelia.


Assuntos
Ouriços , Via de Sinalização Wnt , Humanos , Camundongos , Animais , Ouriços/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Diferenciação Celular/genética , Proteínas/metabolismo , Condrócitos/metabolismo
2.
Am J Hum Genet ; 108(9): 1551-1557, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34329581

RESUMO

Clinical validity assessments of gene-disease associations underpin analysis and reporting in diagnostic genomics, and yet wide variability exists in practice, particularly in use of these assessments for virtual gene panel design and maintenance. Harmonization efforts are hampered by the lack of agreed terminology, agreed gene curation standards, and platforms that can be used to identify and resolve discrepancies at scale. We undertook a systematic comparison of the content of 80 virtual gene panels used in two healthcare systems by multiple diagnostic providers in the United Kingdom and Australia. The process was enabled by a shared curation platform, PanelApp, and resulted in the identification and review of 2,144 discordant gene ratings, demonstrating the utility of sharing structured gene-disease validity assessments and collaborative discordance resolution in establishing national and international consensus.


Assuntos
Consenso , Curadoria de Dados/normas , Doenças Genéticas Inatas/genética , Genômica/normas , Anotação de Sequência Molecular/normas , Austrália , Biomarcadores/metabolismo , Curadoria de Dados/métodos , Atenção à Saúde , Expressão Gênica , Ontologia Genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/patologia , Genômica/métodos , Humanos , Aplicativos Móveis/provisão & distribuição , Terminologia como Assunto , Reino Unido
3.
Genet Med ; : 101293, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39417332

RESUMO

PURPOSE: To characterize the diagnostic and clinical outcomes of a cohort of critically ill infants and children with suspected mitochondrial disorders (MD) undergoing ultra-rapid genomic testing as part of a national program. METHODS: Ultra-rapid genomic sequencing was performed in 454 families (genome sequencing: n=290, exome sequencing +/- mitochondrial DNA sequencing: n=164). In 91 individuals, MD was considered, prompting analysis using an MD virtual gene panel. These individuals were reviewed retrospectively and scored according to modified Nijmegen Mitochondrial Disease Criteria. RESULTS: A diagnosis was achieved in 47% (43/91) of individuals, 40% (17/43) of whom had an MD. Seven additional individuals in whom an MD was not suspected were diagnosed with an MD following broader analysis. Gene-agnostic analysis led to the discovery of two novel disease genes, with pathogenicity validated through targeted functional studies (CRLS1 and MRPL39). Functional studies enabled diagnosis in another four individuals. Of the 24 individuals ultimately diagnosed with an MD, 79% had a change in management, which included 53% whose care was redirected to palliation. CONCLUSION: Ultra-rapid genetic diagnosis of MD in acutely unwell infants and children is critical for guiding decisions about the need for additional investigations and clinical management.

4.
Am J Hum Genet ; 106(4): 559-569, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32197075

RESUMO

Negative regulator of reactive oxygen species (NRROS) is a leucine-rich repeat-containing protein that uniquely associates with latent transforming growth factor beta-1 (TGF- ß1) and anchors it on the cell surface; this anchoring is required for activation of TGF-ß1 in macrophages and microglia. We report six individuals from four families with bi-allelic variants in NRROS. All affected individuals had neurodegenerative disease with refractory epilepsy, developmental regression, and reduced white matter volume with delayed myelination. The clinical course in affected individuals began with normal development or mild developmental delay, and the onset of seizures occurred within the first year of life, followed by developmental regression. Intracranial calcification was detected in three individuals. The phenotypic features in affected individuals are consistent with those observed in the Nrros knockout mouse, and they overlap with those seen in the human condition associated with TGF-ß1 deficiency. The disease-causing NRROS variants involve two significant functional NRROS domains. These variants result in aberrant NRROS proteins with impaired ability to anchor latent TGF-ß1 on the cell surface. Using confocal microscopy in HEK293T cells, we demonstrate that wild-type and mutant NRROS proteins co-localize with latent TGF-ß1 intracellularly. However, using flow cytometry, we show that our mutant NRROS proteins fail to anchor latent TGF-ß1 at the cell surface in comparison to wild-type NRROS. Moreover, wild-type NRROS rescues the defect of our disease-associated mutants in presenting latent TGF-ß1 to the cell surface. Taken together, our findings suggest that loss of NRROS function causes a severe childhood-onset neurodegenerative condition with features suggestive of a disordered response to inflammation.


Assuntos
Encefalopatias/genética , Calcinose/genética , Variação Genética/genética , Proteínas de Ligação a TGF-beta Latente/genética , Doenças Neurodegenerativas/genética , Fator de Crescimento Transformador beta1/genética , Alelos , Feminino , Células HEK293 , Humanos , Lactente , Macrófagos/patologia , Masculino , Microglia/patologia
5.
J Med Genet ; 59(5): 511-516, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34183358

RESUMO

PURPOSE: Binding proteins (G-proteins) mediate signalling pathways involved in diverse cellular functions and comprise Gα and Gßγ units. Human diseases have been reported for all five Gß proteins. A de novo missense variant in GNB2 was recently reported in one individual with developmental delay/intellectual disability (DD/ID) and dysmorphism. We aim to confirm GNB2 as a neurodevelopmental disease gene, and elucidate the GNB2-associated neurodevelopmental phenotype in a patient cohort. METHODS: We discovered a GNB2 variant in the index case via exome sequencing and sought individuals with GNB2 variants via international data-sharing initiatives. In silico modelling of the variants was assessed, along with multiple lines of evidence in keeping with American College of Medical Genetics and Genomics guidelines for interpretation of sequence variants. RESULTS: We identified 12 unrelated individuals with five de novo missense variants in GNB2, four of which are recurrent: p.(Ala73Thr), p.(Gly77Arg), p.(Lys89Glu) and p.(Lys89Thr). All individuals have DD/ID with variable dysmorphism and extraneurologic features. The variants are located at the universally conserved shared interface with the Gα subunit, which modelling suggests weaken this interaction. CONCLUSION: Missense variants in GNB2 cause a congenital neurodevelopmental disorder with variable syndromic features, broadening the spectrum of multisystem phenotypes associated with variants in genes encoding G-proteins.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Proteínas de Ligação ao GTP/genética , Humanos , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Sequenciamento do Exoma
6.
Hum Mutat ; 43(5): 582-594, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35170830

RESUMO

Auriculocondylar syndrome (ACS) is a rare craniofacial disorder characterized by mandibular hypoplasia and an auricular defect at the junction between the lobe and helix, known as a "Question Mark Ear" (QME). Several additional features, originating from the first and second branchial arches and other tissues, have also been reported. ACS is genetically heterogeneous with autosomal dominant and recessive modes of inheritance. The mutations identified to date are presumed to dysregulate the endothelin 1 signaling pathway. Here we describe 14 novel cases and reassess 25 published cases of ACS through a questionnaire for systematic data collection. All patients harbor mutation(s) in PLCB4, GNAI3, or EDN1. This series of patients contributes to the characterization of additional features occasionally associated with ACS such as respiratory, costal, neurodevelopmental, and genital anomalies, and provides management and monitoring recommendations.


Assuntos
Otopatias , Orelha/anormalidades , Otopatias/genética , Humanos , Linhagem , Fenótipo
7.
Biol Reprod ; 107(5): 1155-1158, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-35908231

RESUMO

Genomic testing has the potential to transform outcomes for women with infertility conditions, such as premature ovarian insufficiency (POI), with growing calls for widespread diagnostic use. The current research literature, however, often uses poor variant curation leading to inflated diagnostic claims and fails to address the complexities of genomic testing for this condition. Without careful execution of the transition from research to the clinic, there is danger of inaccurate diagnoses and poor appreciation of broader implications of testing. This Forum outlines the benefits of genomic testing for POI and raises often overlooked concerns.


Assuntos
Infertilidade , Insuficiência Ovariana Primária , Humanos , Feminino , Insuficiência Ovariana Primária/diagnóstico , Insuficiência Ovariana Primária/genética , Infertilidade/genética , Testes Genéticos
8.
Genet Med ; 24(5): 1037-1044, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35181209

RESUMO

PURPOSE: To evaluate whether the additional cost of providing increasingly faster genomic results in pediatric critical care is outweighed by reductions in health care costs and increases in personal utility. METHODS: Hospital costs and medical files from a cohort of 40 children were analyzed. The health economic impact of rapid and ultra-rapid genomic testing, with and without early initiation, relative to standard genomic testing was evaluated. RESULTS: Shortening the time to results led to substantial economic and personal benefits. Early initiation of ultra-rapid genomic testing was the most cost-beneficial strategy, leading to a cost saving of AU$26,600 per child tested relative to standard genomic testing and a welfare gain of AU$12,000 per child tested. Implementation of early ultra-rapid testing of critically ill children is expected to lead to an annual cost saving of AU$7.3 million for the Australian health system and an aggregate welfare gain of AU$3.3 million, corresponding to a total net benefit of AU$10.6 million. CONCLUSION: Early initiation of ultra-rapid genomic testing can offer substantial economic and personal benefits. Future implementation of rapid genomic testing programs should focus not only on optimizing the laboratory workflow to achieve a fast turnaround time but also on changing clinical practice to expedite test initiation.


Assuntos
Cuidados Críticos , Estado Terminal , Austrália , Criança , Análise Custo-Benefício , Testes Genéticos/métodos , Humanos , Lactente
9.
Hum Mutat ; 42(1): 19-24, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33169436

RESUMO

The diagnosis of Mendelian disorders following uninformative exome and genome sequencing remains a challenging and often unmet need. Following uninformative exome and genome sequencing of a family quartet including two siblings with suspected mitochondrial disorder, RNA sequencing (RNAseq) was pursued in one sibling. Long-read amplicon sequencing was used to determine and quantify transcript structure. Immunoblotting studies and quantitative proteomics were performed to demonstrate functional impact. Differential expression analysis of RNAseq data identified significantly decreased expression of the mitochondrial OXPHOS Complex I subunit NDUFB10 associated with a cryptic exon in intron 1 of NDUFB10, that included an in-frame stop codon. The cryptic exon contained a rare intronic variant that was homozygous in both affected siblings. Immunoblot and quantitative proteomic analysis of fibroblasts revealed decreased abundance of Complex I subunits, providing evidence of isolated Complex I deficiency. Through multiomic analysis we present data implicating a deep intronic variant in NDUFB10 as the cause of mitochondrial disease in two individuals, providing further support of the gene-disease association. This study highlights the importance of transcriptomic and proteomic analyses as complementary diagnostic tools in patients undergoing genome-wide diagnostic evaluation.


Assuntos
Doenças Mitocondriais , NADH Desidrogenase/genética , Proteômica , Complexo I de Transporte de Elétrons/genética , Humanos , Íntrons/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Mutação
10.
Genet Med ; 23(6): 1108-1115, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33568804

RESUMO

PURPOSE: ClinGen provides gene-specific guidance for interpretation of sequence variants in MYH7. We assessed laboratory and clinical impact of reclassification by the American College of Medical Genetics and Genomics-Association for Molecular Pathology (ACMG-AMP) and ClinGen recommendations in 43 MYH7 variants reported by a diagnostic laboratory between 2013 and 2017. METHODS: Fifty-two proband reports containing MYH7 variants were reinterpreted by original ACMG-AMP and ClinGen guidelines. Evidence items were compared across schemes and reasons for classification differences recorded. Laboratory impact was assessed by number of recommended report reissues, and reclassifications coded as clinically "actionable" or "equivalent." Available pedigrees were reviewed to describe projected cascade impact. RESULTS: ClinGen produced a higher proportion of diagnostic classifications (65% of variants) compared with ACMG-AMP (54%) and fewer variants of uncertain significance (30% versus 42%). ClinGen classification resulted in actionable changes in 18% of variants with equal upgrades and downgrades from original report. ClinGen's revisions to PM1 and PS4 contributed to classification differences in 21% and 19% of variants respectively. Each classification change per proband report impacted, on average, 3.1 cascade reports with a further 6.3 first- and second-degree relatives potentially available for genotyping per family. CONCLUSION: ClinGen's gene-specific criteria provide expert-informed guidance for interpretation of MYH7 sequence variants. Periodic re-evaluation improves diagnostic confidence and should be considered by clinical and laboratory teams.


Assuntos
Cardiomiopatias , Laboratórios , Humanos , Miosinas Cardíacas/genética , Testes Genéticos , Variação Genética/genética , Genoma Humano , Cadeias Pesadas de Miosina/genética
11.
Genet Med ; 22(12): 1986-1993, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32773771

RESUMO

PURPOSE: Cost-effectiveness evaluations of first-line genomic sequencing (GS) in the diagnosis of children with genetic conditions are limited by the lack of well-defined comparative cohorts. We sought to evaluate the cost-effectiveness of early GS in pediatric patients with complex monogenic conditions compared with a matched historical cohort. METHODS: Data, including investigation costs, were collected in a prospective cohort of 92 pediatric patients undergoing singleton GS over an 18-month period (2016-2017) with two of the following: a condition with high mortality, multisystem disease involving three or more organs, or severe limitation of daily function. Comparative data were collected in a matched historical cohort who underwent traditional investigations in the years 2012-2013. RESULTS: GS yielded a diagnosis in 42% while traditional investigations yielded a diagnosis in 23% (p = 0.003). A change in management was experienced by 74% of patients diagnosed following GS, compared with 32% diagnosed following traditional investigations. Singleton GS at a cost of AU$3100 resulted in a mean saving per person of AU$3602 (95% confidence interval [CI] AU$2520-4685). Cost savings occurred across all investigation subtypes and were only minimally offset by clinical management costs. CONCLUSION: GS in complex pediatric patients saves significant costs and doubles the diagnostic yield of traditional approaches.


Assuntos
Exoma , Genômica , Criança , Mapeamento Cromossômico , Análise Custo-Benefício , Humanos , Estudos Prospectivos
12.
Hum Mutat ; 40(5): 619-630, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30740813

RESUMO

The lipid phosphatase gene FIG4 is responsible for Yunis-Varón syndrome and Charcot-Marie-Tooth disease Type 4J, a peripheral neuropathy. We now describe four families with FIG4 variants and prominent abnormalities of central nervous system (CNS) white matter (leukoencephalopathy), with onset in early childhood, ranging from severe hypomyelination to mild undermyelination, in addition to peripheral neuropathy. Affected individuals inherited biallelic FIG4 variants from heterozygous parents. Cultured fibroblasts exhibit enlarged vacuoles characteristic of FIG4 dysfunction. Two unrelated families segregate the same G > A variant in the +1 position of intron 21 in the homozygous state in one family and compound heterozygous in the other. This mutation in the splice donor site of exon 21 results in read-through from exon 20 into intron 20 and truncation of the final 115 C-terminal amino acids of FIG4, with retention of partial function. The observed CNS white matter disorder in these families is consistent with the myelination defects in the FIG4 null mouse and the known role of FIG4 in oligodendrocyte maturation. The families described here the expanded clinical spectrum of FIG4 deficiency to include leukoencephalopathy.


Assuntos
Alelos , Doenças Desmielinizantes/diagnóstico , Doenças Desmielinizantes/genética , Flavoproteínas/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Monoéster Fosfórico Hidrolases/genética , Criança , Pré-Escolar , Análise Mutacional de DNA , Doenças Desmielinizantes/metabolismo , Fibroblastos/metabolismo , Genótipo , Humanos , Padrões de Herança , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Linhagem , Fenótipo
13.
Genet Med ; 21(1): 173-180, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29765138

RESUMO

PURPOSE: To systematically investigate the longer-term clinical and health economic impacts of genomic sequencing for rare-disease diagnoses. METHODS: We collected information on continuing diagnostic investigation, changes in management, cascade testing, and parental reproductive outcomes in 80 infants who underwent singleton whole-exome sequencing (WES). RESULTS: The median duration of follow-up following result disclosure was 473 days. Changes in clinical management due to diagnostic WES results led to a cost saving of AU$1,578 per quality-adjusted life year gained, without increased hospital service use. Uninformative WES results contributed to the diagnosis of non-Mendelian conditions in seven infants. Further usual diagnostic investigations in those with ongoing suspicion of a genetic condition yielded no new diagnoses, while WES data reanalysis yielded four. Reanalysis at 18 months was more cost-effective than every 6 months. The parents of diagnosed children had eight more ongoing pregnancies than those without a diagnosis. Taking the costs and benefits of cascade testing and reproductive service use into account, there was an additional cost of AU$8,118 per quality-adjusted life year gained due to genomic sequencing. CONCLUSION: These data strengthen the case for the early use of genomic testing in the diagnostic trajectory, and can guide laboratory policy on periodic WES data reanalysis.


Assuntos
Sequenciamento do Exoma/economia , Doenças Raras/diagnóstico , Doenças Raras/economia , Doenças Raras/genética , Criança , Análise Custo-Benefício/economia , Exoma/genética , Testes Genéticos/economia , Genômica , Humanos , Lactente , Doenças Raras/epidemiologia
14.
Genet Med ; 21(2): 516, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30158691

RESUMO

The original PDF version of this Article omitted to list Clara L Gaff as a corresponding author and the affiliations were incorrectly labelled as Present Addresses. Furthermore, Tables 1 and 2 have been updated to clarify that the Australian dollar is used for the values. These errors have now been corrected in the PDF and HTML versions of the Article.

15.
Genet Med ; 21(4): 1021-1026, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30293988

RESUMO

PURPOSE: RAC3 is an underexamined member of the Rho GTPase gene family that is expressed in the developing brain and linked to key cellular functions. De novo missense variants in the homolog RAC1 were recently associated with developmental disorders. In the RAC subfamily, transforming missense changes at certain shared residues have been observed in human cancers and previously characterized in experimental studies. The purpose of this study was to determine whether constitutional dysregulation of RAC3 is associated with human disease. METHODS: We discovered a RAC3 variant in the index case using genome sequencing, and searched for additional variants using international data-sharing initiatives. Functional effects of the variants were assessed using a multifaceted approach generalizable to most clinical laboratory settings. RESULTS: We rapidly identified five individuals with de novo monoallelic missense variants in RAC3, including one recurrent change. Every participant had severe intellectual disability and brain malformations. In silico protein modeling, and prior in vivo and in situ experiments, supported a transforming effect for each of the three different RAC3 variants. All variants were observed in databases of somatic variation in cancer. CONCLUSIONS: Missense variants in RAC3 cause a novel brain disorder, likely through a mechanism of constitutive protein activation.


Assuntos
Predisposição Genética para Doença , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas rac de Ligação ao GTP/genética , Adulto , Pré-Escolar , GTP Fosfo-Hidrolases/genética , Humanos , Recém-Nascido , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/fisiopatologia , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/fisiopatologia , Fenótipo , Sequenciamento Completo do Genoma
16.
Am J Med Genet A ; 179(10): 2075-2082, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31361404

RESUMO

Zinc finger protein 462 (ZNF462) is a relatively newly discovered vertebrate specific protein with known critical roles in embryonic development in animal models. Two case reports and a case series study have described the phenotype of 10 individuals with ZNF462 loss of function variants. Herein, we present 14 new individuals with loss of function variants to the previous studies to delineate the syndrome of loss of function in ZNF462. Collectively, these 24 individuals present with recurring phenotypes that define a multiple congenital anomaly syndrome. Most have some form of developmental delay (79%) and a minority has autism spectrum disorder (33%). Characteristic facial features include ptosis (83%), down slanting palpebral fissures (58%), exaggerated Cupid's bow/wide philtrum (54%), and arched eyebrows (50%). Metopic ridging or craniosynostosis was found in a third of study participants and feeding problems in half. Other phenotype characteristics include dysgenesis of the corpus callosum in 25% of individuals, hypotonia in half, and structural heart defects in 21%. Using facial analysis technology, a computer algorithm applying deep learning was able to accurately differentiate individuals with ZNF462 loss of function variants from individuals with Noonan syndrome and healthy controls. In summary, we describe a multiple congenital anomaly syndrome associated with haploinsufficiency of ZNF462 that has distinct clinical characteristics and facial features.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Criança , Pré-Escolar , Fácies , Feminino , Humanos , Lactente , Masculino , Fenótipo , Síndrome
17.
Genet Med ; 20(12): 1554-1563, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29543227

RESUMO

PURPOSE: The purpose of the study was to implement and prospectively evaluate the outcomes of a rapid genomic diagnosis program at two pediatric tertiary centers. METHODS: Rapid singleton whole-exome sequencing (rWES) was performed in acutely unwell pediatric patients with suspected monogenic disorders. Laboratory and clinical barriers to implementation were addressed through continuous multidisciplinary review of process parameters. Diagnostic and clinical utility and cost-effectiveness of rWES were assessed. RESULTS: Of 40 enrolled patients, 21 (52.5%) received a diagnosis, with median time to report of 16 days (range 9-109 days). A result was provided during the first hospital admission in 28 of 36 inpatients (78%). Clinical management changed in 12 of the 21 diagnosed patients (57%), including the provision of lifesaving treatment, avoidance of invasive biopsies, and palliative care guidance. The cost per diagnosis was AU$13,388 (US$10,453). Additional cost savings from avoidance of planned tests and procedures and reduced length of stay are estimated to be around AU$543,178 (US$424,101). The clear relative advantage of rWES, joint clinical and laboratory leadership, and the creation of a multidisciplinary "rapid team" were key to successful implementation. CONCLUSION: Rapid genomic testing in acute pediatrics is not only feasible but also cost-effective, and has high diagnostic and clinical utility. It requires a whole-of-system approach for successful implementation.


Assuntos
Sequenciamento do Exoma/tendências , Testes Genéticos/tendências , Patologia Molecular/tendências , Pediatria/tendências , Análise Custo-Benefício , Exoma/genética , Feminino , Testes Genéticos/economia , Genoma Humano/genética , Genômica , Humanos , Masculino , Patologia Molecular/economia , Pediatria/economia , Sequenciamento do Exoma/economia
18.
Am J Med Genet A ; 176(2): 470-476, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29271604

RESUMO

Noonan syndrome is characterized by typical craniofacial dysmorphism, postnatal growth retardation, congenital heart defect, and learning difficulties and belongs to the RASopathies, a group of neurodevelopmental disorders caused by germline mutations in genes encoding components of the RAS-MAPK pathway. Mutations in the RAF1 gene are associated with Noonan syndrome, with a high prevalence of hypertrophic cardiomyopathy (HCM). RAF1 mutations cluster in exons encoding the conserved region 2 (CR2), the kinase activation segment of the CR3 domain, and the C-terminus. We present two boys with Noonan syndrome and the identical de novo RAF1 missense variant c.1082G>C/p.(Gly361Ala) affecting the CR3, but located outside the kinase activation segment. The p.(Gly361Ala) mutation has been identified as a RAF1 allele conferring resistance to RAF inhibitors. This amino acid change favors a RAF1 conformation that allows for enhanced RAF dimerization and increased intrinsic kinase activity. Both patients with Noonan syndrome showed typical craniofacial dysmorphism, macrocephaly, and short stature. One individual developed HCM and was diagnosed with a disseminated oligodendroglial-like leptomeningeal tumor (DOLT) of childhood at the age of 9 years. While there is a well-established association of NS with malignant tumors, especially childhood hemato-oncological diseases, brain tumors have rarely been reported in Noonan syndrome. Our data demonstrate that mutation scanning of the entire coding region of genes associated with Noonan syndrome is mandatory not to miss rare variants located outside the known mutational hotspots.


Assuntos
Neoplasias Encefálicas/genética , Cardiomiopatia Hipertrófica/genética , Síndrome de Noonan/genética , Proteínas Proto-Oncogênicas c-raf/genética , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/fisiopatologia , Cardiomiopatia Hipertrófica/fisiopatologia , Criança , Sequência Conservada/genética , Éxons/genética , Mutação em Linhagem Germinativa , Humanos , Lactente , Masculino , Síndrome de Noonan/complicações , Síndrome de Noonan/fisiopatologia , Sequenciamento do Exoma
19.
Genet Med ; 18(11): 1090-1096, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26938784

RESUMO

PURPOSE: To prospectively evaluate the diagnostic and clinical utility of singleton whole-exome sequencing (WES) as a first-tier test in infants with suspected monogenic disease. METHODS: Singleton WES was performed as a first-tier sequencing test in infants recruited from a single pediatric tertiary center. This occurred in parallel with standard investigations, including single- or multigene panel sequencing when clinically indicated. The diagnosis rate, clinical utility, and impact on management of singleton WES were evaluated. RESULTS: Of 80 enrolled infants, 46 received a molecular genetic diagnosis through singleton WES (57.5%) compared with 11 (13.75%) who underwent standard investigations in the same patient group. Clinical management changed following exome diagnosis in 15 of 46 diagnosed participants (32.6%). Twelve relatives received a genetic diagnosis following cascade testing, and 28 couples were identified as being at high risk of recurrence in future pregnancies. CONCLUSIONS: This prospective study provides strong evidence for increased diagnostic and clinical utility of singleton WES as a first-tier sequencing test for infants with a suspected monogenic disorder. Singleton WES outperformed standard care in terms of diagnosis rate and the benefits of a diagnosis, namely, impact on management of the child and clarification of reproductive risks for the extended family in a timely manner.Genet Med 18 11, 1090-1096.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Patologia Molecular , Exoma/genética , Doenças Genéticas Inatas/genética , Humanos , Recém-Nascido
20.
PLoS Genet ; 9(8): e1003746, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24009529

RESUMO

Cilia are architecturally complex organelles that protrude from the cell membrane and have signalling, sensory and motility functions that are central to normal tissue development and homeostasis. There are two broad categories of cilia; motile and non-motile, or primary, cilia. The central role of primary cilia in health and disease has become prominent in the past decade with the recognition of a number of human syndromes that result from defects in the formation or function of primary cilia. This rapidly growing class of conditions, now known as ciliopathies, impact the development of a diverse range of tissues including the neural axis, craniofacial structures, skeleton, kidneys, eyes and lungs. The broad impact of cilia dysfunction on development reflects the pivotal position of the primary cilia within a signalling nexus involving a growing number of growth factor systems including Hedgehog, Pdgf, Fgf, Hippo, Notch and both canonical Wnt and planar cell polarity. We have identified a novel ENU mutant allele of Ift140, which causes a mid-gestation embryonic lethal phenotype in homozygous mutant mice. Mutant embryos exhibit a range of phenotypes including exencephaly and spina bifida, craniofacial dysmorphism, digit anomalies, cardiac anomalies and somite patterning defects. A number of these phenotypes can be attributed to alterations in Hedgehog signalling, although additional signalling systems are also likely to be involved. We also report the identification of a homozygous recessive mutation in IFT140 in a Jeune syndrome patient. This ENU-induced Jeune syndrome model will be useful in delineating the origins of dysmorphology in human ciliopathies.


Assuntos
Proteínas de Transporte/genética , Comunicação Celular/genética , Cílios/patologia , Síndrome de Ellis-Van Creveld/genética , Desenvolvimento Embrionário/genética , Animais , Polaridade Celular , Cílios/genética , Modelos Animais de Doenças , Síndrome de Ellis-Van Creveld/patologia , Proteínas Hedgehog/genética , Humanos , Camundongos , Mutação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA