RESUMO
Brown root rot disease (BRRD) is a highly destructive tree disease. Early diagnosis of BRRD has been challenging because the first symptoms and signs are often observed after extensive tissue colonization. Existing molecular detection methods, all based on the internal transcribed spacer (ITS) region, were developed without testing against global Phellinus noxius isolates, other wood-decay fungi, or host plant tissues. This study aimed to develop SYBR Green real-time quantitative PCR (qPCR) assays for P. noxius. The primer pair Pn_ITS_F/Pn_ITS_R targets the ITS, and the primer pair Pn_NLR_F/Pn_NLR_R targets a P. noxius-unique group of homologous genes identified through a comparative genomics analysis. The homologous genes belong to the nucleotide-binding-oligomerization-domain-like receptor (NLR) superfamily. The new primer pairs and a previous primer pair G1F/G1R were optimized for qPCR conditions and tested for specificity using 61 global P. noxius isolates, 5 other Phellinus species, and 22 non-Phellinus wood-decay fungal species. Although all three primer pairs could detect as little as 100 fg (approximately 2.99 copies) of P. noxius genomic DNA, G1F/G1R had the highest specificity and Pn_NLR_F/Pn_NLR_R had the highest efficiency. To avoid false positives, the cutoff quantification cycle values were determined as 34 for G1F/G1R, 29 for Pn_ITS_F/Pn_ITS_R, and 32 for Pn_NLR_F/Pn_NLR_R. We further validated these qPCR assays using Ficus benjamina seedlings artificially inoculated with P. noxius, six tree species naturally infected by P. noxius, rhizosphere soil, and bulk soil. The newly developed qPCR assays provide sensitive detection and quantification of P. noxius, which is useful for long-term monitoring of BRRD status.
RESUMO
Brown root rot disease (BRRD), caused by Phellinus noxius, is an important tree disease in tropical and subtropical areas. To improve chemical control of BRRD and deter emergence of fungicide resistance in P. noxius, this study investigated control efficacies and systemic activities of fungicides with different modes of action. Fourteen fungicides with 11 different modes of action were tested for inhibitory effects in vitro on 39 P. noxius isolates from Taiwan, Hong Kong, Malaysia, Australia, and Pacific Islands. Cyproconazole, epoxiconazole, and tebuconazole (Fungicide Resistance Action Committee [FRAC] 3, target-site G1) inhibited colony growth of P. noxius by 99.9 to 100% at 10 ppm and 97.7 to 99.8% at 1 ppm. The other effective fungicide was cyprodinil + fludioxonil (FRAC 9 + 12, target-site D1 + E2), which showed growth inhibition of 96.9% at 10 ppm and 88.6% at 1 ppm. Acropetal translocation of six selected fungicides was evaluated in bishop wood (Bischofia javanica) seedlings by immersion of the root tips in each fungicide at 100 ppm, followed by liquid or gas chromatography tandem mass spectrometry analyses of consecutive segments of root, stem, and leaf tissues at 7 and 21 days posttreatment. Bidirectional translocation of the fungicides was also evaluated by stem injection of fungicide stock solutions. Cyproconazole and tebuconazole were the most readily absorbed by roots and efficiently transported acropetally. Greenhouse experiments suggested that cyproconazole, tebuconazole, and epoxiconazole have a slightly higher potential for controlling BRRD than mepronil, prochloraz, and cyprodinil + fludioxonil. Because all tested fungicides lacked basipetal translocation, soil drenching should be considered instead of trunk injection for their use in BRRD control.
Assuntos
Basidiomycota , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Compostos de EpóxiRESUMO
BACKGROUND: While the cognitive sequelae of traumatic brain injury (TBI) are well known, emotional impairments after TBI are suboptimally characterized. Lack of awareness of emotional difficulties can make self-report unreliable. However, individuals with TBI demonstrate involuntary changes in heart rate variability which may enable objective quantification of emotional dysfunction. METHODS: Sixteen subjects with chronic TBI and 10 age-matched controls were tested on an emotional function battery during which they watched a series of film clips normed to elicit specific positively and negatively valenced emotions: amusement, sexual amusement, sadness, fear and disgust. Subjective responses to the emotional stimuli were also obtained. Additionally, surface electrodes measured cardiac and respiratory signals to compute heart rate variability (HRV), from which measures of parasympathetic activity, the respiratory frequency area (RFA) and sympathetic activity, the low frequency area (LFA), of the HRV frequency spectrum were derived. The Neurobehavioral Rating Scale-Revised (NRS-R) and the King-Devick (KD) test were administered to assess neurobehavioral dysfunction. RESULTS: The two groups showed no differences in subjective ratings of emotional intensity. Subjects with TBI showed significantly decreased sympathetic activity when viewing amusing stimuli and significantly increased sympathetic activity when viewing sad stimuli compared to controls. Most of the subjects did not show agitation, anxiety, depression, blunted affect, emotional withdrawal, decreased motivation or mental fatiguability on the NRS-R. However, 13/16 subjects with TBI demonstrated attention difficulty on the NRS-R which was positively correlated with the increased sympathetic activity during sad stimuli. Both attention difficulty and abnormal autonomic responses to sad stimuli were correlated with the timing on the KD test, which reflected difficulty with visual attention shifting. CONCLUSIONS: The HRV spectrum may be useful to identify subclinical emotional dysfunction in individuals with TBI. Attention difficulites, specifically impairment in visual attention shifting, may contribute to abnormal reactivity to sad stimuli that may be detected and potentially treated to improve emotional function.
Assuntos
Conscientização/fisiologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/psicologia , Transtornos Cognitivos/etiologia , Frequência Cardíaca/fisiologia , Transtornos do Humor/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Transtornos Cognitivos/reabilitação , Eletrocardiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos do Humor/reabilitação , Psicoterapia/métodos , Respiração , Adulto JovemRESUMO
Creating high-quality, low-resistance contacts is essential for the development of electronic applications using two-dimensional (2D) layered materials. Many previously reported methods for lowering the contact resistance rely on volatile chemistry that either oxidize or degrade in ambient air. Nearly all reported efforts have been conducted on only a few devices with mechanically exfoliated flakes which is not amenable to large scale manufacturing. In this work, Schottky barrier heights of metal-MoS2 contacts to devices fabricated from CVD synthesized MoS2 films were reduced by inserting a thin tunneling Ta2O5 layer between MoS2 and metal contacts. Schottky barrier height reductions directly correlate with exponential reductions in contact resistance. Over two hundred devices were tested and contact resistances extracted for large scale statistical analysis. As compared to metal-MoS2 Schottky contacts without an insulator layer, the specific contact resistivity has been lowered by up to 3 orders of magnitude and current values increased by 2 orders of magnitude over large area (>4 cm(2)) films.
RESUMO
Sex differences have been claimed an imperative factor in the optimization of psychiatric treatments. Intermittent theta-burst stimulation (iTBS), a patterned form of repetitive transcranial magnetic stimulation, is a promising non-invasive treatment option. Here, we investigated whether the real-time neural response to iTBS differs between men and women, and which mechanisms may mediate these differences. To this end, we capitalized on a concurrent iTBS/functional near-infrared spectroscopy setup over the left dorsolateral prefrontal cortex, a common clinical target, to test our assumptions. In a series of experiments, we show (1) a biological sex difference in absolute hemoglobin concentrations in the left dorsolateral prefrontal cortex in healthy participants; (2) that this sex difference is amplified by iTBS but not by cognitive tasks; and (3) that the sex difference amplified by iTBS is modulated by stimulation intensity. These results inform future stimulation treatment optimizations towards precision psychiatry.
Assuntos
Córtex Pré-Frontal Dorsolateral , Espectroscopia de Luz Próxima ao Infravermelho , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Feminino , Masculino , Adulto , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto Jovem , Córtex Pré-Frontal Dorsolateral/fisiologia , Caracteres SexuaisRESUMO
Predicting repetitive transcranial magnetic stimulation (rTMS) treatment outcomes in major depressive disorder (MDD) could reduce the financial and psychological risks of treatment failure. We systematically reviewed and meta-analyzed studies that leveraged neurophysiological and neuroimaging markers to predict rTMS response in MDD. Five databases were searched from inception to May 25, 2023. The primary meta-analytic outcome was predictive accuracy pooled from classification models. Regression models were summarized qualitatively. A promising marker was identified if it showed a sensitivity and specificity of 80% or higher in at least two independent studies. Searching yielded 36 studies. Twenty-two classification modeling studies produced an estimated area under the summary receiver operating characteristic curve of 0.87 (95% CI = 0.83-0.92), with 86.8% sensitivity (95% CI = 80.6-91.2%) and 81.9% specificity (95% CI = 76.1-86.4%). Frontal theta cordance measured by electroencephalography is closest to proof of concept. Predicting rTMS response using neurophysiological and neuroimaging markers is promising for clinical decision-making. However, replications by different research groups are needed to establish rigorous markers.
Assuntos
Transtorno Depressivo Maior , Neuroimagem , Estimulação Magnética Transcraniana , Humanos , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/fisiopatologia , Eletroencefalografia , Resultado do TratamentoRESUMO
Emerging data-intensive computation has driven the advanced packaging and vertical stacking of integrated circuits, for minimized latency and energy consumption. Yet a monolithic three-dimensional (3D) integrated structure with interleaved logic and high-density memory layers has been difficult to achieve due to challenges in managing the thermal budget. Here we experimentally demonstrate a monolithic 3D integration of atomically-thin molybdenum disulfide (MoS2) transistors and 3D vertical resistive random-access memories (VRRAMs), with the MoS2 transistors stacked between the bottom-plane and top-plane VRRAMs. The whole fabrication process is integration-friendly (below 300 °C), and the measurement results confirm that the top-plane fabrication does not affect the bottom-plane devices. The MoS2 transistor can drive each layer of VRRAM into four resistance states. Circuit-level modeling of the monolithic 3D structure demonstrates smaller area, faster data transfer, and lower energy consumption than a planar memory. Such platform holds a high potential for energy-efficient 3D on-chip memory systems.
RESUMO
Two-dimensional (2D) semiconductors have been proposed for heterogeneous integration with existing silicon technology; however, their chemical vapor deposition (CVD) growth temperatures are often too high. Here, we demonstrate direct CVD solid-source precursor synthesis of continuous monolayer (1L) MoS2 films at 560 °C in 50 min, within the 450-to-600 °C, 2 h thermal budget window required for back-end-of-the-line compatibility with modern silicon technology. Transistor measurements reveal on-state current up to â¼140 µA/µm at 1 V drain-to-source voltage for 100 nm channel lengths, the highest reported to date for 1L MoS2 grown below 600 °C using solid-source precursors. The effective mobility from transfer length method test structures is 29 ± 5 cm2 V-1 s-1 at 6.1 × 1012 cm-2 electron density, which is comparable to mobilities reported from films grown at higher temperatures. The results of this work provide a path toward the realization of high-quality, thermal-budget-compatible 2D semiconductors for heterogeneous integration with silicon manufacturing.
RESUMO
Collections of fungal samples from two dead leaf specimens from Italy were subjected to morphological examination and phylogenetic analyses. Two coelomycetous taxa belonging to two different genera in Xylariomycetidae, Sordariomycetes, namely Discosia and Sporocadus, were identified. The Discosia taxon is revealed as a new species and is herein introduced as Discosia ravennica sp. nov. while the Sporocadus taxon is identified as Sporocadus rosigena. Multi-locus phylogeny based on DNA sequence data of the large subunit (LSU) and internal transcribed spacer (ITS) of nuclear ribosomal genes, ß-tubulin (ß-tub) and RNA polymerase II second largest subunit (rpb2) showed that D. ravennica is related to D. neofraxinea but it forms an independent lineage that supports its new species status. The new taxon also differs from other Discosia species by its unilocular to bilocular, superficial and applanate conidiomata with basal stroma composed of cells of textura angularis, elongate-ampulliform conidiogenous cells and conidia smaller in size. Sporocadus rosigena is here reported as a new host record from Quercus ilex from Italy. Descriptions, illustrations and molecular data for both species are provided in this paper.
RESUMO
The inferior electrical contact to two-dimensional (2D) materials is a critical challenge for their application in post-silicon very large-scale integrated circuits. Electrical contacts were generally related to their resistive effect, quantified as contact resistance. With a systematic investigation, this work demonstrates a capacitive metal-insulator-semiconductor (MIS) field-effect at the electrical contacts to 2D materials: The field-effect depletes or accumulates charge carriers, redistributes the voltage potential, and gives rise to abnormal current saturation and nonlinearity. On one hand, the current saturation hinders the devices' driving ability, which can be eliminated with carefully engineered contact configurations. On the other hand, by introducing the nonlinearity to monolithic analog artificial neural network circuits, the circuits' perception ability can be significantly enhanced, as evidenced using a coronavirus disease 2019 (COVID-19) critical illness prediction model. This work provides a comprehension of the field-effect at the electrical contacts to 2D materials, which is fundamental to the design, simulation, and fabrication of electronics based on 2D materials. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material (results of the simulation and SEM) is available in the online version of this article at 10.1007/s12274-021-3670-y.
RESUMO
High-density memory arrays require selector devices, which enable selection of a specific memory cell within a memory array by suppressing leakage current through unselected cells. Such selector devices must have highly nonlinear current-voltage characteristics and excellent endurance; thus selectors based on a tunneling mechanism present advantages over those based on the physical motion of atoms or ions. Here, we use two-dimensional (2D) materials to build an ultrathin (three-monolayer-thick) tunneling-based memory selector. Using a sandwich of h-BN, MoS2, and h-BN monolayers leads to an "H-shaped" energy barrier in the middle of the heterojunction, which nonlinearly modulates the tunneling current when the external voltage is varied. We experimentally demonstrate that tuning the MoS2 Fermi level can improve the device nonlinearity from 10 to 25. These results provide a fundamental understanding of the tunneling process through atomically thin 2D heterojunctions and lay the foundation for developing high endurance selectors with 2D heterojunctions, potentially enabling high-density non-volatile memory systems.
RESUMO
Background. High-intensity repetitive training is challenging to provide poststroke. Robotic approaches can facilitate such training by unweighting the limb and/or by improving trajectory control, but the extent to which these types of assistance are necessary is not known. Objective. The purpose of this study was to examine the extent to which robotic path assistance and/or weight support facilitate repetitive 3D movements in high functioning and low functioning subjects with poststroke arm motor impairment relative to healthy controls. Methods. Seven healthy controls and 18 subjects with chronic poststroke right-sided hemiparesis performed 300 repetitions of a 3D circle-drawing task using a 3D Cable-driven Arm Exoskeleton (CAREX) robot. Subjects performed 100 repetitions each with path assistance alone, weight support alone, and path assistance plus weight support in a random order over a single session. Kinematic data from the task were used to compute the normalized error and speed as well as the speed-error relationship. Results. Low functioning stroke subjects (Fugl-Meyer Scale score = 16.6 ± 6.5) showed the lowest error with path assistance plus weight support, whereas high functioning stroke subjects (Fugl-Meyer Scale score = 59.6 ± 6.8) moved faster with path assistance alone. When both speed and error were considered together, low functioning subjects significantly reduced their error and increased their speed but showed no difference across the robotic conditions. Conclusions. Robotic assistance can facilitate repetitive task performance in individuals with severe arm motor impairment, but path assistance provides little advantage over weight support alone. Future studies focusing on antigravity arm movement control are warranted poststroke.
Assuntos
Exoesqueleto Energizado , Atividade Motora/fisiologia , Avaliação de Processos e Resultados em Cuidados de Saúde , Paresia/reabilitação , Desempenho Psicomotor/fisiologia , Robótica , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/terapia , Extremidade Superior/fisiopatologia , Adulto , Idoso , Fenômenos Biomecânicos/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Paresia/etiologia , Índice de Gravidade de Doença , Acidente Vascular Cerebral/complicações , Reabilitação do Acidente Vascular Cerebral/instrumentaçãoRESUMO
The authors established the taxonomic status of endophytic fungi associated with leaves of Pandanaceae collected from southern Thailand. Morphotypes were initially identified based on their characteristics in culture and species level identification was done based on both morphological characteristics and phylogenetic analyses of DNA sequence data. Twenty-two isolates from healthy leaves were categorised into eight morphotypes. Appropriate universal primers were used to amplify specific gene regions and phylogenetic analyses were performed to identify these endophytes and established relationships with extant fungi. The authors identified both ascomycete and basidiomycete species, including one new genus, seven new species and nine known species. Morphological descriptions, colour plates and phylogenies are given for each taxon.
RESUMO
We present a measurement technique, which we call the Pulsed Time-Domain Measurement, for characterizing hysteresis in carbon nanotube field-effect transistors, and demonstrate its applicability for a broad range of 1D and 2D nanomaterials beyond carbon nanotubes. The Pulsed Time-Domain Measurement enables the quantification (density, energy level, and spatial distribution) of charged traps responsible for hysteresis. A physics-based model of the charge trapping process for a carbon nanotube field-effect transistor is presented and experimentally validated using the Pulsed Time-Domain Measurement. Leveraging this model, we discover a source of traps (surface traps) unique to devices with low-dimensional channels such as carbon nanotubes and nanowires (beyond interface traps which exist in today's silicon field-effect transistors). The different charge trapping mechanisms for interface traps and surface traps are studied based on their temperature dependencies. Through these advances, we are able to quantify the interface trap density for carbon nanotube field-effect transistors (â¼3 × 10(13) cm(-2) eV(-1) near midgap), and compare this against a range of previously studied dielectric/semiconductor interfaces.
RESUMO
A different mechanism was found for Cu transport through multi-transferred single-layer graphene serving as diffusion barriers on the basis of time-dependent dielectric breakdown tests. Vertical and lateral transport of Cu dominates at different stress electric field regimes. The classic E-model was modified to project quantitatively the effectiveness of the graphene Cu diffusion barrier at low electric field based on high-field accelerated stress data. The results are compared to industry-standard Cu diffusion barrier material TaN. 3.5 Å single-layer graphene shows the mean time-to-fail comparable to 4 nm TaN, while two-time and three-time transferred single-layer graphene stacks give 2× and 3× improvements, respectively, compared to single-layer graphene at a 0.5 MV/cm electric field. The influences of graphene grain boundaries on Cu vertical transport through the graphene layers are explored, revealing that large-grain (10-15 µm) single-layer graphene gives a 2 orders of magnitude longer lifetime than small-grain (2-3 µm) graphene. As a result, it is more effective to further enhance graphene barrier reliability by improving single-layer graphene quality through increasing grain sizes or using single-crystalline graphene than just by increasing thickness through multi-transfer. These results may also be applied for graphene as barriers for other metals.
RESUMO
The maternal psychological impact of fetal echocardiography may be deleterious in the face of newly diagnosed congenital heart disease. This questionnaire-based study prospectively examined the psychological impact of both normal and abnormal fetal echocardiography. Normal fetal echocardiography decreased maternal anxiety, increased happiness, and increased the closeness women felt toward their unborn children. In contrast, when fetal echocardiography detected congenital heart disease, maternal anxiety typically increased, and mothers commonly felt less happy about being pregnant. However, among women who had recently delivered infants with congenital heart disease, those who had had fetal echocardiography during the pregnancy felt less responsible for their infants' defects and tended to have improved their relationships with the infants' fathers after the prenatal diagnosis of congenital heart disease. Further study of the psychological and medical impact of fetal echocardiography will be necessary to define and optimize the clinical value of this powerful diagnostic tool.
Assuntos
Ecocardiografia/psicologia , Doenças Fetais/diagnóstico por imagem , Cardiopatias Congênitas/diagnóstico por imagem , Mães/psicologia , Gravidez/psicologia , Ultrassonografia Pré-Natal/psicologia , Ansiedade , Ecocardiografia/métodos , Feminino , Cardiopatias Congênitas/psicologia , Humanos , Recém-Nascido , Estresse Psicológico , Inquéritos e QuestionáriosRESUMO
During a survey fungal diversity of xylariaceous fungi in Thailand, a new Nemania species, N. plumbea, was identified. Nemania plumbea is characterized by soft-textured grey stromata on a persistent mat of white hyphae, pale brown ascospores with a short germ-slit on the more convex side. It also produces a Geniculosporium-like anamorph in culture. In order to evaluate its phylogenetic relationships among related species and genera, ITS-5.8S rDNA and RPB2 were analysed separately and simultaneously. Results from the phylogenetic analyses indicate that there is close phylogenetic association between N. plumbea and N. aenea. A preliminary account into the natural grouping of Xylariaceae based on ITS-5.8S rDNA and RPB2 sequences is also discussed.
Assuntos
Xylariales/classificação , DNA Fúngico/genética , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Proteínas Fúngicas/genética , Hypocrea , Filogenia , RNA Polimerase II/genética , RNA Ribossômico 5,8S , Análise de Sequência de DNA , Especificidade da Espécie , Tailândia , Madeira/microbiologia , Xylariales/citologia , Xylariales/genéticaRESUMO
The Sordariomycetes is an important group of fungi whose taxonomic relationships and classification is obscure. There is presently no multi-gene molecular phylogeny that addresses evolutionary relationships among different classes and orders. In this study, phylogenetic analyses with a broad taxon sampling of the Sordariomycetes were conducted to evaluate the utility of four gene regions (LSU rDNA, SSU rDNA, beta-tubulin and RPB2) for inferring evolutionary relationships at different taxonomic ranks. Single and multi-gene genealogies inferred from Bayesian and Maximum Parsimony analyses were compared in individual and combined datasets. At the subclass level, SSU rDNA phylogenies demonstrate their utility as a marker to infer phylogenetic relationships at higher levels. All analyses with SSU rDNA alone, combined LSU rDNA and SSU rDNA, and the combined 28 S rDNA, SSU rDNA and RPB2 datasets resulted in three subclasses: Hypocreomycetidae, Sordariomycetidae and Xylariomycetidae, which correspond well to established morphological classification schemes. At the ordinal level, the best resolved phylogeny was obtained from the combined LSU rDNA and SSU rDNA datasets. Individually, the RPB2 gene dataset resulted in significantly higher number of parsimony informative characters. Our results supported the recent separation of Boliniaceae, Chaetosphaeriaceae and Coniochaetaceae from Sordariales and placement of Coronophorales in Hypocreomycetidae. Microascales was found to be paraphyletic and Ceratocystis is phylogenetically associated to Faurelina, while Microascus and Petriella formed another clade and basal to other members of Halosphaeriales. In addition, the order Lulworthiales does not appear to fit in any of the three subclasses. Congruence between morphological and molecular classification schemes is discussed.
Assuntos
Ascomicetos/classificação , Evolução Molecular , Proteínas Fúngicas/metabolismo , Filogenia , Proteínas Ribossômicas/metabolismo , Tubulina (Proteína)/metabolismo , Ascomicetos/metabolismo , DNA Ribossômico/metabolismo , Dados de Sequência MolecularRESUMO
A total of 38 fungal taxa were identified on senescent untreated and autoclaved Castanopsis fissa leaves during a 4-month study period. Seventy-six percent of the fungal genera found in this survey have not previously been recorded from Castanopsis. Frequency and time of occurrence of fungal taxa occurring on untreated senescent leaves were clustered into four groups when analyzed by cluster analysis, suggesting the replacement of microfungi in stages of succession on naturally senescent leaves. Autoclaved leaves revealed significantly different fungal communities, with only 26% of overlap with the natural ones and no clear patterns of replacement of fungal communities. Factors regulating the rates of decomposition are also discussed.
Assuntos
Fagaceae/microbiologia , Fungos/classificação , Fungos/isolamento & purificação , Folhas de Planta/microbiologia , Biodiversidade , Fungos/citologia , Fungos/crescimento & desenvolvimento , MicroscopiaRESUMO
A trade-off between antimicrobial defences and palatability to dispersers may place limits on fruit persistence in nature. The retention times of ripe fruits on 34 wild plant species under natural conditions (unbagged persistence) and when fruits had been bagged with nylon mesh to exclude frugivores (bagged persistence) were compared in Hong Kong, China (22 degrees N). Bagged persistence is a measure of the effectiveness of fruit defence while unbagged persistence is an inverse measure of attractiveness to vertebrate frugivores. Bagged fruits persisted significantly longer than unbagged fruits in 30 species, with half the species tested persisting for more than 2 months. There was a significant positive relationship between the median persistence times of bagged and unbagged fruits, suggesting that species with a high resistance to microbial infection are also less attractive to frugivores. Both bagged and unbagged fruits persisted significantly longer at lower temperatures. There was a significant positive relationship between bagged persistence time and fibre content of the fruit pulp, but no significant relationships between unbagged persistence and the six fruit traits tested (diameter, pulp as a percentage of fruit fresh weight, and lipid, total soluble carbohydrate, nitrogen and fibre as percentages of pulp dry weight). Mechanical damage significantly decreased the bagged persistence time for half of the species. Although some fruits decayed or dried up while attached to the plant, fruits of 53% of the species remained visually attractive until they fell off.