RESUMO
Menopause is a normal physiological process accompanied by changes in various physiological states. The incidence of vascular calcification (VC) increases each year after menopause and is closely related to osteoporosis (OP). Although many studies have investigated the links between VC and OP, the interaction mechanism of the two under conditions of estrogen loss remains unclear. MicroRNAs (miRNAs), which are involved in epigenetic modification, play a critical role in estrogen-mediated mineralization. In the past several decades, miRNAs have been identified as biomarkers or therapeutic targets in diseases. Thus, we hypothesize that these small molecules can provide new diagnostic and therapeutic approaches. In this review, we summarize the close interactions between VC and OP and the role of miRNAs in their interplay.
Assuntos
MicroRNAs , Pós-Menopausa , Calcificação Vascular , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Feminino , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Pós-Menopausa/genética , Osteoporose Pós-Menopausa/genética , Osteoporose Pós-Menopausa/metabolismo , Estrogênios/metabolismo , Biomarcadores/metabolismo , Osteoporose/genética , Osteoporose/metabolismo , Epigênese GenéticaRESUMO
BACKGROUND: It is challenging to diagnose suspected Duchenne muscular dystrophy (DMD) patients in the very early stage of the disease. More evidence is needed to demonstrate the potential of quantitative MRI (qMRI) in precisely identifying patients before substantial physical decline occurs. PURPOSE: To assess the early diagnostic performance of multi-parametric qMRI for DMD patients, and the ability to identify DMD patients with mild functional decline. STUDY TYPE: Prospective. SUBJECTS: One hundred and forty DMD subjects (9.0 ± 2.2 years old), 24 male healthy controls (HCs) (9.2 ± 2.5 years old). FIELD STRENGTH/SEQUENCE: 3.0 T/3-point Dixon, T1-mapping, and T2-mapping. ASSESSMENT: qMRI measurements (fat fraction [FF], T1, and T2) of 11 thigh muscles (rectus femoris [RF], vastus lateralis [VL], vastus intermedius, vastus medialis, gracilis, sartorius, adductor longus, adductor magnus [AM], semitendinosus, semimembranosus, biceps femoris long head [BFLH]) on the right side were conducted. NorthStar ambulatory assessment (NSAA) score used to evaluate the function of DMD patients and divided them into three subgroups: mild (76-100 score), moderate (51-75 score), and severe (0-50 score) functional decline. STATISTICAL TESTS: Independent t-test, ANOVA analysis, and receiver operating characteristic (ROC) curves. A P-value <0.05 was considered statistically significant. RESULTS: Compared with HCs, FF and T2 were significantly higher in the group of all DMD patients, while T1 was significantly lower. The combination of T1 and T2 in RF, VL, AM, and BFLH achieved excellent area under curve (AUCs) (0.967-0.992) in differentiating five DMD patients without abnormal fat infiltration from HCs. Overall, T2 reached higher AUCs than FF and T1 in distinguishing DMD with mild functional decline from HCs, whereas FF achieved higher AUCs than T1 and T2 in distinguishing three DMD subgroups with functional decline. DATA CONCLUSION: Multi-parametric qMRI demonstrate effective diagnostic capabilities for DMD patients in the early stage of the disease, and can identify patients with mild physical decline. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.
RESUMO
OBJECTIVE: To seek optimal keV settings for imaging carpal tunnel in adults by dual-energy computed tomography (DECT) monoenergetic technique; to describe anatomic characteristics of carpal tunnel and to observe correlation between carpal bony and soft tissue structures. METHODS: DECT images of 20 wrists (11 left and 9 right wrists; 14 men, mean age 26.93±1.38 years, range 23 to 28, and 6 women, mean age 24.17 ± 0.98 years, range 23 to 26) were evaluated. Monoenergetic images were reconstructed at 42, 62, 82, 102, 122, and 142 keV. Image quality was assessed along a 5-point Likert scale, and the highest-quality images were chosen for quantitative analysis. Two musculoskeletal radiologists performed both analyses independently. RESULTS: The optimal energy spectrum with the best contrast-to-noise ratio (CNR) for monoenergetic images were at 62 keV (19 wrists, 95%) and 61 keV (1 wrist, 5%). There was substantial interobserver agreement between the readers in the 5-point Likert scale analysis of image quality (k= 0.793). Bland-Altman plots also indicated good agreement between observers in quantitative analysis. Intra-category 1 and 2 correlation was mostly discovered at hamate hook level and middle level of pisiform (P < 0.05), while bony and soft tissue structures partly reached correlation (P < 0.05). CONCLUSIONS: The optimal energy spectrum for monoenergetic DECT imaging of carpal tunnel structures was 62 keV. DECT monoenergetic imaging could predict changes in soft tissue structures and demonstrate carpal tunnel anatomic structures.
Assuntos
Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Punho , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Radiologistas , Estudos Retrospectivos , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X , Adulto JovemRESUMO
OBJECTIVES: To evaluate the performance of a dual-energy computed tomography (DECT) virtual non-calcium (VNCa) technique in the detection of edema-like marrow signal intensity (ELMSI) in patients with knee joint osteoarthritis (OA) compared to magnetic resonance imaging (MRI). METHODS: The study received local ethics board approval, and written informed consent was obtained. DECT and MRI were used to examine 28 knees in 24 patients with OA. VNCa images were generated by dual-energy subtraction of calcium. The knee joint was divided into 15 regions for ELMSI grading, performed independently by two musculoskeletal radiologists, with MRI as the reference standard. We also analyzed CT numbers through receiver operating characteristics and calculated cut-off values. RESULTS: For the qualitative analysis, we obtained CT sensitivity (Readers 1, 2 = 83.7%, 89.8%), specificity (Readers 1, 2 = 99.5%, 99.5%), positive predictive value (Readers 1, 2 = 95.3%, 95.7%), and negative predictive value (Readers 1, 2 = 97.9%, 98.7%) for ELMSI. The interobserver agreement was excellent (κ = 0.92). The area under the curve for Reader 1 and Reader 2 was 0.961 (95% CI 0.93, 0.99) and 0.992 (95% CI 0.98, 1.00), respectively. CT numbers obtained from the VNCa images were significantly different between regions with and without ELMSI (p < .001). CONCLUSIONS: VNCa images have good diagnostic performance for the qualitative and quantitative analysis of knee osteoarthritis-related ELMSI.
RESUMO
Traumatic bone marrow lesions (TBMLs) are considered to represent a range of concealed bone injuries, including haemorrhage, infarction, and localised oedema caused by trabecular microfracture occurring in the cancellous bone. If TBMLs are not managed timeously, they potentially cause a series of complications that can lead to irreversible morbidity and prolonged recovery time. This article reviews interesting image findings of bone marrow lesions in dual-energy computed tomography (DECT). In addition to combining the benefits of traditional CT imaging, DECT also reveals and identifies various structures using diverse attenuation characteristics of different radiographic spectra. Therefore, DECT has the capacity to detect TBMLs, which have traditionally been diagnosed using MRI. Through evaluating DECT virtual non-calcium maps, the detection of TBMLs is rendered easier and more efficient in some acute accidents.