Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(22): 11927-11932, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224289

RESUMO

The asymmetric total synthesis of (-)-retigeranic acid A was described, which relies on a crucial reductive skeletal rearrangement cascade for the controllable assembly of diverse angular triquinane subunits. Taken together with an intramolecular Michael/aldol cyclization, an ODI-[5 + 2] cycloaddition/pinacol rearrangement cascade, a Wolff ring contraction and a stereoselective HAT reduction, our synthetic approach has enabled the access to (-)-retigeranic acid A in a concise and practical manner.

2.
J Am Chem Soc ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37027322

RESUMO

The total syntheses of nine grayanane diterpenoids, namely, GTX-II (1), GTX-III (2), rhodojaponin III (3), GTX-XV (4), principinol D (5), iso-GTX-II (6), 1,5-seco-GTX-Δ1,10-ene (7), and leucothols B (8) and D (9), that belong to five distinct subtypes, were disclosed in a divergent manner. Among them, six members were accomplished for the first time. The concise synthetic approach features three key transformations: (1) an oxidative dearomatization-induced [5 + 2] cycloaddition/pinacol rearrangement cascade to assemble the bicyclo[3.2.1]octane carbon framework (CD rings); (2) a photosantonin rearrangement to build up the 5/7 bicycle (AB rings) of 1-epi-grayanoids; and (3) a Grob fragmentation/carbonyl-ene process to access four additional subtypes of grayanane skeletons. Density functional theory calculations were performed to elucidate the mechanistic origins of the crucial divergent transformation, which combined with late-stage synthetic findings provided insights into the biosynthetic relationships between these diverse skeletons.

3.
Opt Express ; 26(24): 31965-31975, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30650775

RESUMO

Wide-bandgap inorganic semiconductors based ultraviolet lasers bring versatile applications with significant advantages including low-power consumption, high-power output, robustness and long-term operation stability. However, flexible membrane lasers remain challenging predominantly due to the need for a lattice matched supporting substrate. Here, we develop a simple laser liftoff process to make freestanding single crystalline ZnO membranes that demonstrate low-threshold ultraviolet stimulated emissions together with large sized dimension (> 2 mm), ultralow-weight (m/A<15 g/m2) and excellent flexibility. The 2.6 µm-thick crack-free ZnO membrane exhibits well-retained single crystallinity and enhanced excitonic emissions while the defect-related emissions are completely suppressed. The inelastic exciton-exciton scattering stimulated emissions with increased spontaneous emission rate is obtained with a reduced threshold of 0.35 MW/cm2 in the ZnO membrane transferred onto a flexible polyethylene naphthalate substrate. Theoretical simulations reveal that it is a synergetic effect of the increased quantum efficiency via Purcell effect and the improved optical gain due to vertical directional waveguiding of the membrane, which functions as a Fabry-Perot photonic resonator due to the refractive index contrast at ZnO-air boundaries. With simple architecture, efficient exciton recombination and easy fusion with waveguide system, the ZnO membranes provide an alternative platform to develop compact low-threshold ultraviolet excitonic lasers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA