Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(23): 237001, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34170185

RESUMO

Superconductivity is commonly destroyed by a magnetic field due to orbital or Zeeman-induced pair breaking. Surprisingly, the spin-valley locking in a two-dimensional superconductor with spin-orbit interaction makes the superconducting state resilient to large magnetic fields. We investigate the spectral properties of such an Ising superconductor in a magnetic field taking into account disorder. The interplay of the in-plane magnetic field and the Ising spin-orbit coupling leads to noncollinear effective fields. We find that the emerging singlet and triplet pairing correlations manifest themselves in the occurrence of "mirage" gaps: at (high) energies of the order of the spin-orbit coupling strength, a gaplike structure in the spectrum emerges that mirrors the main superconducting gap. We show that these mirage gaps are signatures of the equal-spin triplet finite-energy pairing correlations and due to their odd parity are sensitive to intervalley scattering.

2.
Phys Rev Lett ; 127(24): 247401, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34951812

RESUMO

We consider the near-field radiative energy transfer between two separated parallel plates: graphene supported by a substrate and a magneto-optic medium. We first study the scenario in which the two plates have the same temperature. An electric current through the graphene gives rise to nonequilibrium fluctuations and induces energy transfer. Both the magnitude and direction of the energy flux can be controlled by the electric current and an in-plane magnetic field in the magneto-optic medium. This is due to the interplay between the nonreciprocal photon occupation number in the graphene and nonreciprocal surface modes in the magneto-optic plate. Furthermore, we report that a tunable thermoelectric current can be generated in the graphene in the presence of a temperature difference between the two plates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA