Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Transl Med ; 21(1): 173, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870952

RESUMO

BACKGROUND: Clinically, Charcot-Marie-Tooth disease (CMT)-associated muscle atrophy still lacks effective treatment. Deletion and mutation of L-periaxin can be involved in CMT type 4F (CMT4F) by destroying the myelin sheath form, which may be related to the inhibitory role of Ezrin in the self-association of L-periaxin. However, it is still unknown whether L-periaxin and Ezrin are independently or interactively involved in the process of muscle atrophy by affecting the function of muscle satellite cells. METHOD: A gastrocnemius muscle atrophy model was prepared to mimic CMT4F and its associated muscle atrophy by mechanical clamping of the peroneal nerve. Differentiating C2C12 myoblast cells were treated with adenovirus-mediated overexpression or knockdown of Ezrin. Then, overexpression of L-periaxin and NFATc1/c2 or knockdown of L-periaxin and NFATc3/c4 mediated by adenovirus vectors were used to confirm their role in Ezrin-mediated myoblast differentiation, myotube formation and gastrocnemius muscle repair in a peroneal nerve injury model. RNA-seq, real-time PCR, immunofluorescence staining and Western blot were used in the above observation. RESULTS: For the first time, instantaneous L-periaxin expression was highest on the 6th day, while Ezrin expression peaked on the 4th day during myoblast differentiation/fusion in vitro. In vivo transduction of adenovirus vectors carrying Ezrin, but not Periaxin, into the gastrocnemius muscle in a peroneal nerve injury model increased the numbers of muscle myosin heavy chain (MyHC) I and II type myofibers, reducing muscle atrophy and fibrosis. Local muscle injection of overexpressed Ezrin combined with incubation of knockdown L-periaxin within the injured peroneal nerve or injection of knockdown L-periaxin into peroneal nerve-injured gastrocnemius muscle not only increased the number of muscle fibers but also recovered their size to a relatively normal level in vivo. Overexpression of Ezrin promoted myoblast differentiation/fusion, inducing increased MyHC-I+ and MyHC-II + muscle fiber specialization, and the specific effects could be enhanced by the addition of adenovirus vectors for knockdown of L-periaxin by shRNA. Overexpression of L-periaxin did not alter the inhibitory effects on myoblast differentiation and fusion mediated by knockdown of Ezrin by shRNA in vitro but decreased myotube length and size. Mechanistically, overexpressing Ezrin did not alter protein kinase A gamma catalytic subunit (PKA-γ cat), protein kinase A I alpha regulatory subunit (PKA reg Iα) or PKA reg Iß levels but increased PKA-α cat and PKA reg II α levels, leading to a decreased ratio of PKA reg I/II. The PKA inhibitor H-89 remarkably abolished the effects of overexpressing-Ezrin on increased myoblast differentiation/fusion. In contrast, knockdown of Ezrin by shRNA significantly delayed myoblast differentiation/fusion accompanied by an increased PKA reg I/II ratio, and the inhibitory effects could be eliminated by the PKA reg activator N6-Bz-cAMP. Meanwhile, overexpressing Ezrin enhanced type I muscle fiber specialization, accompanied by an increase in NFATc2/c3 levels and a decrease in NFATc1 levels. Furthermore, overexpressing NFATc2 or knocking down NFATc3 reversed the inhibitory effects of Ezrin knockdown on myoblast differentiation/fusion. CONCLUSIONS: The spatiotemporal pattern of Ezrin/Periaxin expression was involved in the control of myoblast differentiation/fusion, myotube length and size, and myofiber specialization, which was related to the activated PKA-NFAT-MEF2C signaling pathway, providing a novel L-Periaxin/Ezrin joint strategy for the treatment of muscle atrophy induced by nerve injury, especially in CMT4F.


Assuntos
Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Humanos , Atrofia Muscular , Diferenciação Celular , Fibras Musculares Esqueléticas
2.
Mol Pharm ; 18(9): 3601-3615, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34388342

RESUMO

Chlorin e6 (Ce6) is a promising photosensitizer for tumor photodynamic therapy (PDT). However, the efficacy of Ce6 PDT is limited by Ce6's poor water solubility, rapid blood clearance, and inadequate accumulation in the tumor tissue. This problem is tackled in this work, wherein functionalized superparamagnetic iron oxide nanoparticles (IO-NPs) were used as carriers to deliver Ce6 to melanoma. The IO-NPs were coated with polyglycerol (PG) to afford good aqueous solubility. The chemotherapeutic agent doxorubicin (DOX) was attached to the PG coating via the hydrazone bond to afford affinity to the cell membrane and thereby promote the cell uptake. The hydrophobic nature of DOX also induced the aggregation of IO-NPs to form nanoclusters. Ce6 was then loaded onto the IO nanoclusters through physical adsorption and coordination with surface iron atoms, yielding the final composites IO-PG-DOX-Ce6. In vitro experiments showed that IO-PG-DOX-Ce6 markedly increased Ce6 uptake in mouse melanoma cells, leading to much-enhanced photocytotoxicity characterized by intensified reactive oxygen species production, loss of viability, DNA damage, and stimulation of tumor cell immunogenicity. In vivo experiments corroborated the in vitro findings and demonstrated prolonged blood clearance of IO-PG-DOX-Ce6. Importantly, IO-PG-DOX-Ce6 markedly increased the Ce6 distribution and retention in mouse subcutaneous melanoma grafts and significantly improved the efficacy of Ce6-mediated PDT. No apparent vital organ damage was observed at the same time. In conclusion, the IO-PG-DOX NPs provide a simple and safe delivery platform for efficient tumor enrichment of Ce6, thereby enhancing antimelanoma PDT.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Clorofilídeos/administração & dosagem , Melanoma/tratamento farmacológico , Sistemas de Liberação de Fármacos por Nanopartículas/química , Neoplasias Cutâneas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Linhagem Celular Tumoral , Clorofilídeos/química , Clorofilídeos/farmacocinética , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Feminino , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/química , Melanoma/patologia , Camundongos , Fotoquimioterapia , Neoplasias Cutâneas/patologia , Solubilidade , Distribuição Tecidual
3.
Circ Res ; 123(9): 1080-1090, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30355157

RESUMO

RATIONALE: Hypertension prevalence is much higher among children and adolescents with low birth weight and greater postnatal weight gain than in individuals with normal birth weight. However, the cause and molecular mechanisms underlying this complication remain largely unknown. Our previous studies have shown that RGC-32 (response gene to complement 32)-deficient (RGC-32-/-) mice are born significantly smaller but grow faster than their WT (wild type) controls, which allows adult RGC-32-/- mice to attain body weights similar to those of control mice. OBJECTIVE: The objective of this study is to determine whether RGC-32-/- mice develop hypertension, and if so, to elucidate the underlying mechanisms. METHODS AND RESULTS: By using a radiotelemetry system, we found that RGC-32-/- mice exhibit higher mean arterial pressure than WT mice (101±4 versus 119±5 mm Hg), which enabled us to use RGC-32-/- mice to study the mechanisms underlying low birth weight-related hypertension. The increased blood pressure in RGC-32-/- mice was associated with increased vascular tone and decreased distensibility of small resistance arteries. The increased vascular tone was because of an increase in the relative contribution of sympathetic versus parasympathetic activity and was linked to increased expression of AT1R (angiotensin II type I receptor) and α1-AdR (α1-adrenergic receptor) in arterial smooth muscles. Mechanistically, RGC-32 regulated AT1R gene transcription by interacting with Sp1 (specificity protein 1) transcription factor and further blocking its binding to the AT1R promoter, leading to suppression of AT1R expression. The attenuation of AT1R leads to reduction in α1-AdR expression, which was critical for the balance of sympathetic versus parasympathetic control of vascular tone. Of importance, downregulation of RGC-32 in arterial smooth muscles was also associated with low birth weight and hypertension in humans. CONCLUSIONS: Our results indicate that RGC-32 is a novel protein factor vital for maintaining blood pressure homeostasis, especially in individuals with low birth weight.


Assuntos
Pressão Arterial , Hipertensão/metabolismo , Músculo Liso Vascular/metabolismo , Proteínas Nucleares/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Animais , Animais Recém-Nascidos , Pressão Arterial/genética , Sistema Nervoso Autônomo/metabolismo , Sistema Nervoso Autônomo/fisiopatologia , Peso ao Nascer , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica , Predisposição Genética para Doença , Homeostase , Humanos , Hipertensão/genética , Hipertensão/fisiopatologia , Recém-Nascido de Baixo Peso , Recém-Nascido , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/metabolismo , Músculo Liso Vascular/inervação , Músculo Liso Vascular/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Fenótipo , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores Adrenérgicos alfa 1/genética , Transdução de Sinais , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Vasoconstrição
4.
J Cell Physiol ; 234(12): 22921-22934, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31148189

RESUMO

Bax triggers cell apoptosis by permeabilizing the outer mitochondrial membrane, leading to membrane potential loss and cytochrome c release. However, it is unclear if proteasomal degradation of Bax is involved in the apoptotic process, especially in heart ischemia-reperfusion (I/R)-induced injury. In the present study, KPC1 expression was heightened in left ventricular cardiomyocytes of patients with coronary heart disease (CHD), in I/R-myocardium in vivo and in hypoxia and reoxygenation (H/R)-induced cardiomyocytes in vitro. Overexpression of KPC1 reduced infarction size and cell apoptosis in I/R rat hearts. Similarly, the forced expression of KPC1 restored mitochondrial membrane potential (MMP) and cytochrome c release driven by H/R in H9c2 cells, whereas reducing cell apoptosis, and knockdown of KPC1 by short-hairpin RNA (shRNA) deteriorated cell apoptosis induced by H/R. Mechanistically, forced expression of KPC1 promoted Bax protein degradation, which was abolished by proteasome inhibitor MG132, suggesting that KPC1 promoted proteasomal degradation of Bax. Furthermore, KPC1 prevented basal and apoptotic stress-induced Bax translocation to mitochondria. Bax can be a novel target for the antiapoptotic effects of KPC1 on I/R-induced cardiomyocyte apoptosis and render mechanistic penetration into at least a subset of the mitochondrial effects of KPC1.


Assuntos
Doença das Coronárias/genética , Mitocôndrias/genética , Complexos Ubiquitina-Proteína Ligase/genética , Proteína X Associada a bcl-2/genética , Animais , Apoptose/genética , Hipóxia Celular/genética , Sobrevivência Celular/genética , Doença das Coronárias/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteólise , Ratos , Transdução de Sinais/genética
5.
BMC Cardiovasc Disord ; 19(1): 16, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30642255

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a myocardial disease. However, the coexistence of HCM with muscular ventricular septal defect (VSD), especially those with both incomplete spontaneous closure and coronary abnormal origin, is relatively rare. CASE PRESENTATION: We report herein a unique case of HCM accompanied with incomplete spontaneous closure of muscular VSD and abnormal origin of right coronary artery (RCA) in a 26-year-old man, which was diagnosed by combination of transthoracic 2-dimensional (2D), color Doppler, Contrast-enhanced echocardiography and computed tomography angiography (CTA). CONCLUSIONS: To our knowledge, this is the first report that HCM along with the incomplete spontaneous closure of muscular VSD and anomalous RCA arising from left coronary sinus was revealed through combination of transthoracic 2D, color Doppler, Contrast-enhanced echocardiography and CTA. These observations indicated that other associated anomalies in patients with HCM could be easily missed if examined by the single echocardiography. Therefore, HCM-associated congenital abnormalities should be screened by combination of transthoracic 2D, color Doppler, contrast-enhanced echocardiography, and CTA.


Assuntos
Cardiomiopatia Hipertrófica/diagnóstico por imagem , Angiografia por Tomografia Computadorizada , Angiografia Coronária/métodos , Anomalias dos Vasos Coronários/diagnóstico por imagem , Ecocardiografia Doppler em Cores , Comunicação Interventricular/diagnóstico por imagem , Adulto , Cardiomiopatia Hipertrófica/complicações , Anomalias dos Vasos Coronários/complicações , Comunicação Interventricular/complicações , Humanos , Masculino , Imagem Multimodal , Valor Preditivo dos Testes
6.
Cell Physiol Biochem ; 48(2): 433-449, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30016789

RESUMO

BACKGROUND/AIMS: Vagus nerve stimulation (VNS) suppresses arrhythmic activity and minimizes cardiomyocyte injury. However, how VNS affects angiogenesis/arteriogenesis in infarcted hearts, is poorly understood. METHODS: Myocardial infarction (MI) was achieved by ligation of the left anterior descending coronary artery (LAD) in rats. 7 days after LAD, stainless-steel wires were looped around the left and right vagal nerve in the neck for vagus nerve stimulation (VNS). The vagal nerve was stimulated with regular pulses of 0.2ms duration at 20 Hz for 10 seconds every minute for 4 hours, and then ACh levels by ELISA in cardiac tissue and serum were evaluated for its release after VNS. Three and 14 days after VNS, Real-time PCR, immunostaining and western blot were respectively used to determine VEGF-A/B expressions and α-SMA- and CD31-postive vessels in VNS-hearts with pretreatment of α7-nAChR blocker mecamylamine (10 mg/kg, ip) or mACh-R blocker atropine (10 mg/kg, ip) for 1 hour. The coronary function and left ventricular performance were analyzed by Langendorff system and hemodynamic parameters in VNS-hearts with pretreatment of VEGF-A/B-knockdown or VEGFR blocker AMG706. Coronary arterial endothelial cells proliferation, migration and tube formation were evaluated for angiogenesis following the stimulation of VNS in coronary arterial smooth muscle cells (VSMCs). RESULTS: VNS has been shown to stimulate VEGF-A and VEGF-B expressions in coronary arterial smooth muscle cells (VSMCs) and endothelial cells (ECs) with an increase of α-SMA- and CD31-postive vessel number in infarcted hearts. The VNS-induced VEGF-A/B expressions and angiogenesis were abolished by m-AChR inhibitor atropine and α7-nAChR blocker mecamylamine in vivo. Interestingly, knockdown of VEGF-A by shRNA mainly reduced VNS-mediated formation of CD31+ microvessels. In contrast, knockdown of VEGF-B powerfully abrogated VNS-induced formation of α-SMA+ vessels. Consistently, VNS-induced VEGF-A showed a greater effect on EC tube formation as compared to VNS-induced VEGF-B. Moreover, VEGF-A promoted EC proliferation and VSMC migration while VEGF-B induced VSMC proliferation and EC migration in vitro. Mechanistically, vagal neurotransmitter acetylcholine stimulated VEGF-A/B expressions through m/nACh-R/PI3K/Akt/Sp1 pathway in EC. Functionally, VNS improved the coronary function and left ventricular performance. However, blockade of VEGF receptor by antagonist AMG706 or knockdown of VEGF-A or VEGF-B by shRNA significantly diminished the beneficial effects of VNS on ventricular performance. CONCLUSION: VNS promoted angiogenesis/arteriogenesis to repair the infracted heart through the synergistic effects of VEGF-A and VEGF-B.


Assuntos
Infarto do Miocárdio/terapia , Estimulação do Nervo Vago , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator B de Crescimento do Endotélio Vascular/metabolismo , Acetilcolina/análise , Acetilcolina/sangue , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Indóis/farmacologia , Masculino , Microvasos/citologia , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Niacinamida/administração & dosagem , Niacinamida/farmacologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Muscarínicos/química , Receptores Muscarínicos/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator B de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator B de Crescimento do Endotélio Vascular/genética , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
7.
Biochim Biophys Acta Mol Basis Dis ; 1863(11): 2772-2782, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28693920

RESUMO

S100B is a biomarker of nervous system injury, but it is unknown if it is also involved in vascular injury. In the present study, we investigated S100B function in vascular remodeling following injury. Balloon injury in rat carotid artery progressively induced neointima formation while increasing S100B expression in both neointimal vascular smooth muscle (VSMC) and serum along with an induction of proliferating cell nuclear antigen (PCNA). Knockdown of S100B by its shRNA delivered by adenoviral transduction attenuated the PCNA expression and neointimal hyperplasia in vivo and suppressed PDGF-BB-induced VSMC proliferation and migration in vitro. Conversely, overexpression of S100B promoted VSMC proliferation and migration. Mechanistically, S100B altered VSMC phenotype by decreasing the contractile protein expression, which appeared to be mediated by NF-κB activity. S100B induced NF-κB-p65 gene transcription, protein expression and nuclear translocation. Blockade of NF-κB activity by its inhibitor reversed S100B-mediated downregulation of VSMC contractile protein and increase in VSMC proliferation and migration. It appeared that S100B regulated NF-κB expression through, at least partially, the Receptor for Advanced Glycation End products (RAGE) because RAGE inhibitor attenuated S100B-mediated NF-κB promoter activity as well as VSMC proliferation. Most importantly, S100B secreted from VSMC impaired endothelial tube formation in vitro, and knockdown of S100B promoted re-endothelialization of injury-denuded arteries in vivo. These data indicated that S100B is a novel regulator for vascular remodeling following injury and may serve as a potential biomarker for vascular damage or drug target for treating proliferative vascular diseases.


Assuntos
Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/biossíntese , Remodelação Vascular , Animais , Regulação da Expressão Gênica , Músculo Liso Vascular/lesões , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Neointima/patologia , Ratos , Ratos Sprague-Dawley , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Fator de Transcrição RelA/metabolismo
8.
J Transl Med ; 14(1): 116, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27146579

RESUMO

AIMS: To investigate whether vascular endothelial growth factor B (VEGF-B) improves myocardial survival and cardiac stem cell (CSC) function in the ischemia-reperfusion (I/R) heart and promotes CSC mobilization and angiogenesis. METHODS AND RESULTS: One hour after myocardial ischemia and infarction, rats were treated with recombinant human VEGF-B protein following 24 h or 7 days of myocardial reperfusion. Twenty-four hours after myocardial I/R, VEGF-B increased pAkt and Bcl-2 levels, reduced p-p38MAPK, LC3-II/I, beclin-1, CK, CK-MB and cTnt levels, triggered cardiomyocyte protection against I/R-induced autophagy and apoptosis, and contributed to the decrease of infarction size and the improvement of heart function during I/R. Simultaneously, an in vitro hypoxia-reoxygenation (H/R)-induced H9c2 cardiomyocyte injury model was used to mimic I/R injury model in vivo; in this model, VEGF-B decreased LDH release, blocked H/R-induced apoptosis by inhibiting cell autophagy, and these special effects could be abolished by the autophagy inducer, rapamycin. Mechanistically, VEGF-B markedly activated the Akt signaling pathway while slightly inhibiting p38MAPK, leading to the blockade of cell autophagy and thus protecting cardiomyocyte from H/R-induced activation of the intrinsic apoptotic pathway. Seven days after I/R, VEGF-B induced the expression of SDF-1α and HGF, resulting in the massive mobilization and homing of c-Kit positive cells, triggering further angiogenesis and vasculogenesis in the infracted heart and contributing to the improvement of I/R heart function. CONCLUSION: VEGF-B could contribute to a favorable short- and long-term prognosis for I/R via the dual manipulation of cardiomyocytes and CSCs.


Assuntos
Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/citologia , Miócitos Cardíacos/citologia , Células-Tronco/citologia , Fator B de Crescimento do Endotélio Vascular/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Creatina Quinase/metabolismo , Modelos Animais de Doenças , Testes de Função Cardíaca/efeitos dos fármacos , Masculino , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/complicações , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Troponina T/metabolismo , Proteína X Associada a bcl-2/metabolismo
9.
Mol Cell Biochem ; 413(1-2): 9-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26769665

RESUMO

VEGF-C is a newly identified proangiogenic protein playing an important role in vascular disease and angiogenesis. However, its role in myocardial ischemia/reperfusion (I/R) injury remains unknown. The objective of this study was to determine the role and mechanism of VEGF-C in myocardial ischemia-reperfusion injury. Rat left ventricle myocardium was injected with recombinant human VEGF-C protein (0.1 or 1.0 µg/kg b.w.) 1 h prior to myocardial ischemia-reperfusion (I/R) injury. 24 h later, the myocardial infarction size, the number of TUNEL-positive cardiomyocytes, the levels of creatine kinase (CK), CK-MB, cardiac troponin, malondialdehyde (MDA) content, and apoptosis protein Bax expression were decreased, while Bcl2 and pAkt expression were increased in VEGF-C-treated myocardium as compared to the saline-treated I/R hearts. VEGF-C also improved the function of I/R-injured hearts. In the H2O2-induced H9c2 cardiomyocytes, which mimicked the I/R injury in vivo, VEGF-C pre-treatment decreased the LDH release and MDA content, blocked H2O2-induced apoptosis by inhibiting the pro-apoptotic protein Bax expression and its translocation to the mitochondrial membrane, and consequently attenuated H2O2-induced decrease of mitochondrial membrane potential and increase of cytochrome c release from mitochondria. Mechanistically, VEGF-C activated Akt signaling pathway via VEGF receptor 2, leading to a blockade of Bax expression and mitochondrial membrane translocation and thus protected cardiomyocyte from H2O2-induced activation of intrinsic apoptotic pathway. VEGF-C exerts its cardiac protection following I/R injury via its anti-apoptotic effect.


Assuntos
Cardiotônicos/administração & dosagem , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/citologia , Fator C de Crescimento do Endotélio Vascular/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Humanos , Peróxido de Hidrogênio/farmacologia , L-Lactato Desidrogenase/metabolismo , Malondialdeído/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator C de Crescimento do Endotélio Vascular/farmacologia
10.
BMC Cardiovasc Disord ; 15: 116, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26446519

RESUMO

BACKGROUND: Oxidative stress is closely associated with cardiac fibrosis. However, the effect of copper, zinc-superoxide dismutase (SOD1) as a therapeutic agent is limited due to the insufficient transduction. This study was aimed to investigate the effect of PEP-1-SOD1 fusion protein on angiotensin II (ANG II)-induced collagen metabolism in rat cardiac myofibroblasts (MCFs). METHODS: MCFs were pretreated with SOD1 or PEP-1-SOD1 fusion protein for 2 h followed by incubation with ANG II for 24 h. Cell proliferation was measured by Cell Counting Kit-8. Superoxide anion productions were detected by both fluorescent microscopy and Flow Cytometry. MMP-1 and TIMP-1 were determined by ELISA. Intracellular MDA content and SOD activity were examined by commercial assay kits. Protein expression was analyzed by western blotting. RESULTS: PEP-1-SOD1 fusion protein efficiently transduced into MCF, scavenged intracellular O2 (-), decreased intracellular MDA content, increased SOD activity, suppressed ANG II-induced proliferation, reduced expression of TGF-ß1, α-SMA, collagen type I and III, restored MMP-1 secretion, and attenuated TIMP-1 secretion. CONCLUSION: PEP-1-SOD1 suppressed MCF proliferation and differentiation and reduced production of collagen type I and III. Therefore, PEP-1-SOD1 fusion protein may be a potential novel therapeutic agent for cardiac fibrosis.


Assuntos
Colágeno Tipo III/metabolismo , Colágeno Tipo I/metabolismo , Cisteamina/análogos & derivados , Miofibroblastos/metabolismo , Peptídeos/farmacologia , Superóxido Dismutase/farmacologia , Angiotensina II , Animais , Proliferação de Células/efeitos dos fármacos , Cisteamina/farmacologia , Masculino , Malondialdeído/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Superóxido Dismutase-1 , Superóxidos/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo
11.
J Mol Histol ; 55(1): 51-67, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38165566

RESUMO

Vagal nerve stimulation (VNS) provides a novel therapeutic strategy for injured hearts by activating cholinergic anti-inflammatory pathways. However, little information is available on the metabolic pattern and arteriogenesis of VSMCs after MI. VNS has been shown to stimulate the expression of CPT1α, CPT1ß, Glut1, Glut4 and SDF-1α in coronary VSMCs, decreasing the number of CD68-positive macrophages while increasing CD206-positive macrophages in the infarcted hearts, leading to a decrease in TNF-α and IL-1ß accompanied by a reduced ratio of CD68- and CD206-positive cells, which were dramatically abolished by atropine and mecamylamine in vivo. Knockdown of SDF-1α substantially abrogated the effect of VNS on macrophagecell alteration and inflammatory factors in infarcted hearts. Mechanistically, ACh induced SDF-1α expression in VSMCs in a dose-dependent manner. Conversely, atropine, mecamylamine, and a PI3K/Akt inhibitor completely eliminated the effect of ACh on SDF-1α expression. Functionally, VNS promoted arteriogenesis and improved left ventricular performance, which could be abolished by Ad-shSDF-1α. Thus, VNS altered the VSMC metabolism pattern and arteriogenesis to repair the infarcted heart by inducing SDF-1α expression, which was associated with the m/nAChR-Akt signaling pathway.


Assuntos
Infarto do Miocárdio , Estimulação do Nervo Vago , Ratos , Animais , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quimiocina CXCL12/metabolismo , Ratos Sprague-Dawley , Mecamilamina/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Músculo Liso Vascular/metabolismo , Derivados da Atropina/uso terapêutico
12.
J Transl Med ; 11: 113, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23642335

RESUMO

BACKGROUND: Catalase (CAT) breaks down H2O2 into H2O and O2 to protects cells from oxidative damage. However, its translational potential is limited because exogenous CAT cannot enter living cells automatically. This study is aimed to investigate if PEP-1-CAT fusion protein can effectively protect cardiomyocytes from oxidative stress due to hypoxia/reoxygenation (H/R)-induced injury. METHODS: H9c2 cardomyocytes were pretreated with catalase (CAT) or PEP-1-CAT fusion protein followed by culturing in a hypoxia and re-oxygenation condition. Cell apoptosis were measured by Annexin V and PI double staining and Flow cytometry. Intracellular superoxide anion level was determined, and mitochondrial membrane potential was measured. Expression of apoptosis-related proteins including Bcl-2, Bax, Caspase-3, PARP, p38 and phospho-p38 was analyzed by western blotting. RESULTS: PEP-1-CAT protected H9c2 from H/R-induced morphological alteration and reduced the release of lactate dehydrogenase (LDH) and malondialdehyde content. Superoxide anion production was also decreased. In addition, PEP-1-CAT inhibited H9c2 apoptosis and blocked the expression of apoptosis stimulator Bax while increased the expression of Bcl-2, leading to an increased mitochondrial membrane potential. Mechanistically, PEP-1-CAT inhibited p38 MAPK while activating PI3K/Akt and Erk1/2 signaling pathways, resulting in blockade of Bcl2/Bax/mitochondrial apoptotic pathway. CONCLUSION: Our study has revealed a novel mechanism by which PEP-1-CAT protects cardiomyocyte from H/R-induced injury. PEP-1-CAT blocks Bcl2/Bax/mitochondrial apoptotic pathway by inhibiting p38 MAPK while activating PI3K/Akt and Erk1/2 signaling pathways.


Assuntos
Apoptose , Catalase/metabolismo , Miócitos Cardíacos/patologia , Oxigênio/metabolismo , Peptídeos/metabolismo , Transdução de Sinais , Ânions/metabolismo , Hipóxia Celular , Linhagem Celular , Citometria de Fluxo , Humanos , Peróxido de Hidrogênio/metabolismo , L-Lactato Desidrogenase/metabolismo , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Estresse Oxidativo , Proteínas Recombinantes de Fusão/metabolismo , Superóxidos/metabolismo
13.
Int J Mol Sci ; 14(12): 24029-45, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24336063

RESUMO

The exact molecular mechanism that mediates hypoxia-induced pulmonary fibrosis needs to be further clarified. The aim of this study was to explore the effect and underlying mechanism of angiotensin II (Ang II) on collagen synthesis in hypoxic human lung fibroblast (HLF) cells. The HLF-1 cell line was used for in vitro studies. Angiotensinogen (AGT), angiotensin converting enzyme (ACE), angiotensin II type 1 receptor (AT1R) and angiotensin II type 2 receptor (AT2R) expression levels in human lung fibroblasts were analysed using real-time polymerase chain reaction (RT-PCR) after hypoxic treatment. Additionally, the collagen type I (Col-I), AT1R and nuclear factor κappaB (NF-κB) protein expression levels were detected using Western blot analysis, and NF-κB nuclear translocation was measured using immunofluorescence localization analysis. Ang II levels in HLF-1 cells were measured with an enzyme-linked immunosorbent assay (ELISA). We found that hypoxia increased Col-I mRNA and protein expression in HLF-1 cells, and this effect could be inhibited by an AT1R or AT2R inhibitor. The levels of NF-κB, RAS components and Ang II production in HLF-1 cells were significantly increased after the hypoxia exposure. Hypoxia or Ang II increased NF-κB-p50 protein expression in HLF-1 cells, and the special effect could be inhibited by telmisartan (TST), an AT1R inhibitor, and partially inhibited by PD123319, an AT2R inhibitor. Importantly, hypoxia-induced NF-κB nuclear translocation could be nearly completely inhibited by an AT1R or AT2R inhibitor. Furthermore pyrrolidine dithiocarbamate (PDTC), a NF-κB blocker, abolished the expression of hypoxia-induced AT1R and Col-I in HLF-1 cells. Our results indicate that Ang II-mediated NF-κB signalling via ATR is involved in hypoxia-induced collagen synthesis in human lung fibroblasts.


Assuntos
Angiotensina II/metabolismo , Hipóxia Celular , Colágeno Tipo I/metabolismo , Angiotensina II/análise , Angiotensinogênio/genética , Angiotensinogênio/metabolismo , Benzimidazóis/farmacologia , Benzoatos/farmacologia , Linhagem Celular , Colágeno Tipo I/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Pulmão/citologia , Pulmão/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Piridinas/farmacologia , Pirrolidinas/farmacologia , RNA Mensageiro/metabolismo , Receptor Tipo 1 de Angiotensina/química , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/química , Receptor Tipo 2 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/metabolismo , Telmisartan , Tiocarbamatos/farmacologia
14.
Adv Healthc Mater ; 12(28): e2301561, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567571

RESUMO

Infiltration of tumor-associated macrophages (TAM) characterized by an M2 phenotype is an overriding feature in malignant tumors. Reprogramming TAM is the most cutting-edge strategy for cancer therapy. In the present study, an iron-based metal-organic framework (MOF) nanoreactor loaded with dihydroartemisinin (DHA) is developed, which provides high uptake by TAM and retains their viability, thus effectively addressing the inefficiency of the DHA at low concentrations. Impressively, DHA@MIL-101 can selectively accumulate in tumor tissues and remodel TAM to the M1 phenotype. The results of RNA sequencing further suggest that this nanoreactor may regulate ferroptosis, a DNA damage signaling pathway in TAM. Indeed, the outcomes confirm that DHA@MIL-101 triggers ferroptosis in TAM. In addition, the findings reveal that DNA damage induced by DHA nanoreactors activates the intracellular cGAS sensor, resulting in the binding of STING to IRF3 and thereby up-regulating the immunogenicity. In contrast, blocking ferroptosis impairs DHA@MIL-101-induced activation of STING signaling and phenotypic remodeling. Finally, it is shown that DHA nanoreactors deploy anti-tumor immunotherapy through ferroptosis-mediated TAM reprogramming. Taken together, immune efficacy is achieved through TAM's remodeling by delivering DHA and iron ions into TAM using nanoreactors, providing a novel approach for combining phytopharmaceuticals with nanocarriers to regulate the immune microenvironment.


Assuntos
Ferroptose , Macrófagos , Imunoterapia , Ferro , Nanotecnologia , Microambiente Tumoral
15.
ESC Heart Fail ; 10(6): 3311-3329, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641543

RESUMO

AIMS: We aim to explore the role and mechanism of vagus nerve stimulation (VNS) in coronary endothelial cells and angiogenesis in infarcted hearts. METHODS AND RESULTS: Seven days after rat myocardial infarction (MI) was prepared by ligation of the left anterior descending coronary artery, the left cervical vagus nerve was treated with electrical stimulation 1 h after intraperitoneal administration of the α7-nicotinic acetylcholine inhibitor mecamylamine or the mAChR inhibitor atropine or 3 days after local injection of Ad-shSDF-1α into the infarcted heart. Cardiac tissue acetylcholine (ACh) and serum ACh, tumour necrosis factor α (TNF-α), interleukin 1ß (IL-1ß) and interleukin 6 (IL-6) levels were detected by ELISA to determine whether VNS was successful. An inflammatory injury model in human coronary artery endothelial cells (HCAECs) was established by lipopolysaccharide and identified by evaluating TNF-α, IL-1ß and IL-6 levels and tube formation. Immunohistochemistry staining was performed to evaluate CD31-positive vessel density and stromal cell-derived factor-l alpha (SDF-1α) expression in the MI heart in vivo and the expression and distribution of SDF-1α, C-X-C motif chemokine receptor 4 and CXCR7 in HCAECs in vitro. Western blotting was used to detect the levels of SDF-1α, V-akt murine thymoma viral oncogene homolog (AKT), phosphorylated AKT (pAKT), specificity protein 1 (Sp1) and phosphorylation of Sp1 in HCAECs. Left ventricular performance, including left ventricular systolic pressure, left ventricular end-diastolic pressure and rate of the rise and fall of ventricular pressure, should be evaluated 28 days after VNS treatment. VNS was successfully established for MI therapy with decreases in serum TNF-α, IL-1ß and IL-6 levels and increases in cardiac tissue and serum ACh levels, leading to increased SDF-1α expression in coronary endothelial cells of MI hearts, triggering angiogenesis of MI hearts with increased CD31-positive vessel density, which was abolished by the m/nAChR inhibitors mecamylamine and atropine or knockdown of SDF-1α by shRNA. ACh promoted SDF-1α expression and its distribution along with the branch of the formed tube in HCAECs, resulting in an increase in the number of tubes formed in HCAECs. ACh increased the levels of pAKT and phosphorylation of Sp1 in HCAECs, resulting in inducing SDF-1α expression, and the specific effects could be abolished by mecamylamine, atropine, the PI3K/AKT blocker wortmannin or the Sp1 blocker mithramycin. Functionally, VNS improved left ventricular performance, which could be abolished by Ad-shSDF-1α. CONCLUSIONS: VNS promoted angiogenesis to repair the infarcted heart by inducing SDF-1α expression and redistribution along new branches during angiogenesis, which was associated with the m/nAChR-AKT-Sp1 signalling pathway.


Assuntos
Infarto do Miocárdio , Estimulação do Nervo Vago , Ratos , Humanos , Camundongos , Animais , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Acetilcolina , Células Endoteliais/metabolismo , Fator de Necrose Tumoral alfa , Mecamilamina , Interleucina-6 , Fosfatidilinositol 3-Quinases , Células Estromais/metabolismo , Células Estromais/patologia , Derivados da Atropina
16.
Sci Rep ; 13(1): 436, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624121

RESUMO

We aimed to explore whether superfluous sympathetic activity affects myoblast differentiation, fusion, and myofiber types using a continuous single-dose isoprenaline exposure model in vitro and to further confirm the role of distinct NFATs in ISO-mediated effects. Compared with delivery of single and interval single, continuous single-dose ISO most obviously diminished myotube size while postponing myoblast differentiation/fusion in a time- and dose-dependent pattern, accompanied by an apparent decrease in nuclear NFATc1/c2 levels and a slight increase in nuclear NFATc3/c4 levels. Overexpression of NFATc1 or NFATc2, particularly NFATc1, markedly abolished the inhibitory effects of ISO on myoblast differentiation/fusion, myotube size and Myh7 expression, which was attributed to a remarkable increase in the nuclear NFATc1/c2 levels and a reduction in the nuclear NFATc4 levels and the associated increase in the numbers of MyoG and MEF2C positive nuclei within more than 3 nuclei myotubes, especially in MEF2C. Moreover, knockdown of NFATc3 by shRNA did not alter the inhibitory effect of ISO on myoblast differentiation/fusion or myotube size but partially recovered the expression of Myh7, which was related to the slightly increased nuclear levels of NFATc1/c2, MyoG and MEF2C. Knockdown of NFATc4 by shRNA prominently increased the number of MyHC +, MyoG or MEF2C + myoblast cells with 1 ~ 2 nuclei, causing fewer numbers and smaller myotube sizes. However, NFATc4 knockdown further deteriorated the effects of ISO on myoblast fusion and myotube size, with more than 5 nuclei and Myh1/2/4 expression, which was associated with a decrease in nuclear NFATc2/c3 levels. Therefore, ISO inhibited myoblast differentiation/fusion and myotube size through the NFAT-MyoG-MEF2C signaling pathway.


Assuntos
Fibras Musculares Esqueléticas , Transdução de Sinais , Isoproterenol/farmacologia , Isoproterenol/metabolismo , Diferenciação Celular , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , RNA Interferente Pequeno/metabolismo
17.
J Cell Biochem ; 113(8): 2704-13, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22441978

RESUMO

Acetylcholine (ACh) plays an important role in neural and non-neural function, but its role in mesenchymal stem cell (MSC) migration remains to be determined. In the present study, we have found that ACh induces MSC migration via muscarinic acetylcholine receptors (mAChRs). Among several mAChRs, MSCs express mAChR subtype 1 (m1AChR). ACh induces MSC migration via interaction with mAChR1. MEK1/2 inhibitor PD98059 blocks ERK1/2 phosphorylation while partially inhibiting the ACh-induced MSC migration. InsP3Rs inhibitor 2-APB that inhibits MAPK/ERK phosphorylation completely blocks ACh-mediated MSC migration. Interestingly, intracellular Ca(2+) ATPase-specific inhibitor thapsigargin also completely blocks ACh-induced MSC migration through the depletion of intracellular Ca(2+) storage. PKCα or PKCß inhibitor or their siRNAs only partially inhibit ACh-induced MSC migration, but PKC-ζ siRNA completely inhibits ACh-induced MSC migration via blocking ERK1/2 phosphorylation. These results indicate that ACh induces MSC migration via Ca(2+), PKC, and ERK1/2 signal pathways.


Assuntos
Acetilcolina/farmacologia , Cálcio/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Proteína Quinase C/metabolismo , Animais , Western Blotting , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Muscarínicos/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Mol Biol Rep ; 39(5): 5085-93, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22161247

RESUMO

Vascular endothelial growth factor (VEGF) plays a crucial role in tumor angiogenesis. VEGF induces new vessel formation and tumor growth by inducing mitogenesis and chemotaxis of normal endothelial cells and increasing vascular permeability. However, little is known about VEGF function in the proliferation, survival or migration of hepatocellular carcinoma cells (HCC). In the present study, we have found that VEGF receptors are expressed in HCC line BEL7402 and human HCC specimens. Importantly, VEGF receptor expression correlates with the development of the carcinoma. By using a comprehensive approaches including TUNEL assay, transwell and wound healing assays, migration and invasion assays, adhesion assay, western blot and quantitative RT-PCR, we have shown that knockdown of VEGF165 expression by shRNA inhibits the proliferation, migration, survival and adhesion ability of BEL7402. Knockdown of VEGF165 decreased the expression of NF-κB p65 and PKCα while increased the expression of p53 signaling molecules, suggesting that VEGF functions in HCC proliferation and migration are mediated by P65, PKCα and/or p53.


Assuntos
Carcinoma Hepatocelular/patologia , Movimento Celular , Neoplasias Hepáticas/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Carcinoma Hepatocelular/enzimologia , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Humanos , Neoplasias Hepáticas/enzimologia , Invasividade Neoplásica , Proteína Quinase C-alfa/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteína Supressora de Tumor p53/metabolismo
19.
Cardiovasc Res ; 118(3): 859-871, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-33956078

RESUMO

AIMS: Congenital heart disease (CHD) frequently occurs in newborns due to abnormal formation of the heart or major blood vessels. Mutations in the GATA4 gene, which encodes GATA binding protein 4, are responsible for atrial septal defect (ASD), a common CHD. This study aims to gain insights into the molecular mechanisms of CHD using human-induced pluripotent stem cells (iPSCs) from a family cohort with ASD. METHODS AND RESULTS: Patient-specific iPSCs possess the same genetic information as the donor and can differentiate into various cell types from all three germ layers in vitro, thus presenting a promising approach for disease modelling and molecular mechanism research. Here, we generated a patient-specific iPSC line (iPSC-G4T280M) from a family cohort carrying a hereditary ASD mutation in GATA4 gene (T280M), as well as a human embryonic stem cell line (ESC-G4T280M) carrying the isogenic T280M mutation using the CRISPR/Cas9 genome editing method. The GATA4-mutant iPSCs and ESCs were then differentiated into cardiomyocytes (CMs) to model GATA4 mutation-associated ASD. We observed an obvious defect in cell proliferation in cardiomyocytes derived from both GATA4T280M-mutant iPSCs (iPSC-G4T280M-CMs) and ESCs (ESC-G4T280M-CMs), while the impaired proliferation ability of iPSC-G4T280M-CMs could be restored by gene correction. Integrated analysis of RNA-Seq and ChIP-Seq data indicated that FGF16 is a direct target of wild-type GATA4. However, the T280M mutation obstructed GATA4 occupancy at the FGF16 promoter region, leading to impaired activation of FGF16 transcription. Overexpression of FGF16 in GATA4-mutant cardiomyocytes rescued the cell proliferation defect. The direct relationship between GATA4T280M and ASD was demonstrated in a human iPSC model for the first time. CONCLUSIONS: In summary, our study revealed the molecular mechanism of the GATA4T280M mutation in ASD. Understanding the roles of the GATA4-FGF16 axis in iPSC-CMs will shed light on heart development and provide novel insights for the treatment of ASD and other CHD disorders.


Assuntos
Fatores de Crescimento de Fibroblastos , Comunicação Interatrial , Células-Tronco Pluripotentes Induzidas , Linhagem Celular , Células-Tronco Embrionárias , Fatores de Crescimento de Fibroblastos/genética , Fator de Transcrição GATA4/genética , Comunicação Interatrial/genética , Comunicação Interatrial/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Recém-Nascido , Mutação , Miócitos Cardíacos/metabolismo
20.
Drug Deliv ; 29(1): 937-949, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35319321

RESUMO

The present work aims to prove the concept of tumor-targeted drug delivery mediated by platelets. Doxorubicin (DOX) attached to nanodiamonds (ND-DOX) was investigated as the model payload drug of platelets. In vitro experiments first showed that ND-DOX could be loaded in mouse platelets in a dose-dependent manner with a markedly higher efficiency and capacity than free DOX. ND-DOX-loaded platelets (Plt@ND-DOX) maintained viability and ND-DOX could be stably held in the platelets for at least 4 hr. Next, mouse Lewis lung cancer cells were found to activate Plt@ND-DOX and thereby stimulate cargo unloading of Plt@ND-DOX. The unloaded ND-DOX was taken up by co-cultured cancer cells which consequently exhibited loss of viability, proliferation suppression and apoptosis. In vivo, Plt@ND-DOX displayed significantly prolonged blood circulation time over ND-DOX and DOX in mice, and Lewis tumor grafts demonstrated infiltration, activation and cargo unloading of Plt@ND-DOX in the tumor tissue. Consequently, Plt@ND-DOX effectively reversed the growth of Lewis tumor grafts which exhibited significant inhibition of cell proliferation and apoptosis. Importantly, Plt@ND-DOX displayed a markedly higher therapeutic potency than free DOX but without the severe systemic toxicity associated with DOX. Our findings are concrete proof of platelets as efficient and efficacious carriers for tumor-targeted nano-drug delivery with the following features: 1) large loading capacity and high loading efficiency, 2) good tolerance of cargo drug, 3) stable cargo retention and no cargo unloading in the absence of stimulation, 4) prolonged blood circulation time, and 5) excellent tumor distribution and tumor-activated drug unloading leading to high therapeutic potency and few adverse effects. Platelets hold great potential as efficient and efficacious carriers for tumor-targeted nano-drug delivery.


Assuntos
Nanodiamantes , Neoplasias , Animais , Plaquetas , Sobrevivência Celular , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Camundongos , Nanodiamantes/uso terapêutico , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA