Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(29): 10673-10685, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37378655

RESUMO

In this study, exchange fluxes and Hg isotope fractionation during water-atmosphere Hg(0) exchange were investigated at three lakes in China. Water-atmosphere exchange was overall characterized by net Hg(0) emissions, with lake-specific mean exchange fluxes ranging from 0.9 to 1.8 ng m-2 h-1, which produced negative δ202Hg (mean: -1.61 to -0.03‰) and Δ199Hg (-0.34 to -0.16‰) values. Emission-controlled experiments conducted using Hg-free air over the water surface at Hongfeng lake (HFL) showed negative δ202Hg and Δ199Hg in Hg(0) emitted from water, and similar values were observed between daytime (mean δ202Hg: -0.95‰, Δ199Hg: -0.25‰) and nighttime (δ202Hg: -1.00‰, Δ199Hg: -0.26‰). Results of the Hg isotope suggest that Hg(0) emission from water is mainly controlled by photochemical Hg(0) production in water. Deposition-controlled experiments at HFL showed that heavier Hg(0) isotopes (mean ε202Hg: -0.38‰) preferentially deposited to water, likely indicating an important role of aqueous Hg(0) oxidation played during the deposition process. A Δ200Hg mixing model showed that lake-specific mean emission fluxes from water surfaces were 2.1-4.1 ng m-2 h-1 and deposition fluxes to water surfaces were 1.2-2.3 ng m-2 h-1 at the three lakes. Results from the this study indicate that atmospheric Hg(0) deposition to water surfaces indeed plays an important role in Hg cycling between atmosphere and water bodies.


Assuntos
Mercúrio , Água , Isótopos de Mercúrio , Mercúrio/análise , Isótopos , Atmosfera/química , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA