Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 505
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant Cell ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835286

RESUMO

N 6-methyladenosine (m6A) is the most abundant mRNA modification and plays diverse roles in eukaryotes, including plants. It regulates various processes, including plant growth, development, and responses to external or internal stress responses. However, the mechanisms underlying how m6A is related to environmental stresses in both mammals and plants remain elusive. Here, we identified EVOLUTIONARILY CONSERVED C-TERMINAL REGION 8 (ECT8) as an m6A reader protein and showed that its m6A-binding capability is required for salt stress responses in Arabidopsis (Arabidopsis thaliana). ECT8 accelerates the degradation of its target transcripts through direct interaction with the decapping protein DECAPPING 5 within processing bodies. We observed a significant increase in the ECT8 expression level under various environmental stresses. Using salt stress as a representative stressor, we found that the transcript and protein levels of ECT8 rise in response to salt stress. The increased abundance of ECT8 protein results in the enhanced binding capability to m6A-modified mRNAs, thereby accelerating their degradation, especially those of negative regulators of salt stress responses. Our results demonstrated that ECT8 acts as an abiotic stress sensor, facilitating mRNA decay, which is vital for maintaining transcriptome homeostasis and enhancing stress tolerance in plants. Our findings not only advance the understanding of epitranscriptomic gene regulation but also offer potential applications for breeding more resilient crops in the face of rapidly changing environmental conditions.

2.
Proc Natl Acad Sci U S A ; 121(22): e2401185121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768340

RESUMO

The origin of the German cockroach, Blattella germanica, is enigmatic, in part because it is ubiquitous worldwide in human-built structures but absent from any natural habitats. The first historical records of this species are from ca. 250 years ago (ya) from central Europe (hence its name). However, recent research suggests that the center of diversity of the genus is Asian, where its closest relatives are found. To solve this paradox, we sampled genome-wide markers of 281 cockroaches from 17 countries across six continents. We confirm that B. germanica evolved from the Asian cockroach Blattella asahinai approximately 2,100 ya, probably by adapting to human settlements in India or Myanmar. Our genomic analyses reconstructed two primary global spread routes, one older, westward route to the Middle East coinciding with various Islamic dynasties (~1,200 ya), and another younger eastward route coinciding with the European colonial period (~390 ya). While Europe was not central to the early domestication and spread of the German cockroach, European advances in long-distance transportation and temperature-controlled housing were likely important for the more recent global spread, increasing chances of successful dispersal to and establishment in new regions. The global genetic structure of German cockroaches further supports our model, as it generally aligns with geopolitical boundaries, suggesting regional bridgehead populations established following the advent of international commerce.


Assuntos
Blattellidae , Animais , Blattellidae/genética , Filogenia , Europa (Continente) , Evolução Biológica
3.
Plant Cell ; 35(6): 2293-2315, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36929908

RESUMO

Terpenoids constitute the largest class of plant primary and secondary metabolites with a broad range of biological and ecological functions. They are synthesized from isopentenyl diphosphate and dimethylallyl diphosphate, which in plastids are condensed by geranylgeranyl diphosphate synthases (GGPPSs) to produce GGPP (C20) for diterpene biosynthesis and by geranyl diphosphate synthases (GPPSs) to form GPP (C10) for monoterpene production. Depending on the plant species, unlike homomeric GGPPSs, GPPSs exist as homo- and heteromers, the latter of which contain catalytically inactive GGPPS-homologous small subunits (SSUs) that can interact with GGPPSs. By combining phylogenetic analysis with functional characterization of GGPPS homologs from a wide range of photosynthetic organisms, we investigated how different GPPS architectures have evolved within the GGPPS protein family. Our results reveal that GGPPS gene family expansion and functional divergence began early in nonvascular plants, and that independent parallel evolutionary processes gave rise to homomeric and heteromeric GPPSs. By site-directed mutagenesis and molecular dynamics simulations, we also discovered that Leu-Val/Val-Ala pairs of amino acid residues were pivotal in the functional divergence of homomeric GPPSs and GGPPSs. Overall, our study elucidated an evolutionary path for the formation of GPPSs with different architectures from GGPPSs and uncovered the molecular mechanisms involved in this differentiation.


Assuntos
Dimetilaliltranstransferase , Diterpenos , Farnesiltranstransferase/genética , Farnesiltranstransferase/metabolismo , Filogenia , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Diterpenos/metabolismo
4.
Plant J ; 115(4): 1051-1070, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37162381

RESUMO

Anthocyanin and catechin production in tea (Camellia sinensis) leaves can positively affect tea quality; however, their regulatory mechanisms are not fully understood. Here we report that, while the CsMYB75- or CsMYB86-directed MYB-bHLH-WD40 (MBW) complexes differentially activate anthocyanin or catechin biosynthesis in tea leaves, respectively, CsMYBL2a and CsMYBL2b homologs negatively modified the light- and temperature-induced anthocyanin and catechin production in both Arabidopsis and tea plants. The MBW complexes activated both anthocyanin synthesis genes and the downstream repressor genes CsMYBL2a and CsMYBL2b. Overexpression of CsMYBL2b, but not CsMYBL2a, repressed Arabidopsis leaf anthocyanin accumulation and seed coat proanthocyanin production. CsMYBL2b strongly and CsMYBL2a weakly repressed the activating effects of CsMYB75/CsMYB86 on CsDFR and CsANS, due to their different EAR and TLLLFR domains and interactions with CsTT8/CsGL3, interfering with the functions of activating MBW complexes. CsMYBL2b and CsMYBL2a in tea leaves play different roles in fine-tuning CsMYB75/CsMYB86-MBW activation of biosynthesis of anthocyanins and catechins, respectively. The CsbZIP1-CsmiR858a-CsMYBL2 module mediated the UV-B- or cold-activated CsMYB75/CsMYB86 regulation of anthocyanin/catechin biosynthesis by repressing CsMYBL2a and CsMYBL2b. Similarly, the CsCOP1-CsbZIP1-CsPIF3 module, and BR signaling as well, mediated the high temperature repression of anthocyanin and catechin biosynthesis through differentially upregulating CsMYBL2b and CsMYBL2a, respectively. The present study provides new insights into the complex regulatory networks in environmental stress-modified flavonoid production in tea plant leaves.


Assuntos
Arabidopsis , Camellia sinensis , Catequina , Antocianinas , Camellia sinensis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Temperatura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chá , Regulação da Expressão Gênica de Plantas
5.
Small ; : e2311823, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456380

RESUMO

Perception of UV radiation has important applications in medical health, industrial production, electronic communication, etc. In numerous application scenarios, there is an increasing demand for the intuitive and low-cost detection of UV radiation through colorimetric visual behavior, as well as the efficient and multi-functional utilization of UV radiation. However, photodetectors based on photoconductive modes or photosensitive colorimetric materials are not conducive to portable or multi-scene applications owing to their complex and expensive photosensitive components, potential photobleaching, and single-stimulus response behavior. Here, a multifunctional visual sensor based on the "host-guest photo-controlled permutation" strategy and the "lock and key" model is developed. The host-guest specific molecular recognition and electrochromic sensing platform is integrated at the micro-molecular scale, enabling multi-functional and multi-scene applications in the convenient and fast perception of UV radiation, military camouflage, and information erasure at the macro level of human-computer interaction through light-electrical co-controlled visual switching characteristics. This light-electrical co-controlled visual sensor based on an optoelectronic multi-mode sensing system is expected to provide new ideas and paradigms for healthcare, microelectronics manufacturing, and wearable electronic devices owing to its advantages of signal visualization, low energy consumption, low cost, and versatility.

6.
Cancer Cell Int ; 24(1): 204, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858669

RESUMO

BACKGROUND: Aberrant Derlin-1 (DERL1) expression is associated with an overactivation of p-AKT, whose involvement in breast cancer (BRCA) development has been widely speculated. However, the precise mechanism that links DERL1 expression and AKT activation is less well-studied. METHODS: Bioinformatic analyses hold a promising approach by which to detect genes' expression levels and their association with disease prognoses in patients. In the present work, a dual-luciferase assay was employed to investigate the relationship between DERL1 expression and the candidate miRNA by both in vitro and in vivo methods. Further in-depth studies involving immunoprecipitation-mass spectrum (IP-MS), co-immunoprecipitation (Co-IP), as well as Zdock prediction were performed. RESULTS: Overexpression of DERL1 was detected in all phenotypes of BRCA, and its knockdown showed an inhibitory effect on BRCA cells both in vitro and in vivo. The Cancer Genome Atlas (TCGA) database reported that DERL1 overexpression was correlated with poor overall survival in BRCA cases, and so the quantification of DERL1 expression could be a potential marker for the clinical diagnosis of BRCA. On the other hand, miR-181c-5p was downregulated in BRCA, suggesting that its overexpression could be a potent therapeutic route to improve the overall survival of BRCA cases. Prior bioinformatic analyses indicated a somewhat positive correlation between DERL1 and TRAF6 as well as between TRAF6 and AKT, but not between miR-181c-5p and DERL1. In retrospect, DERL1 overexpression promoted p-AKT activation through K63 ubiquitination. DERL1 was believed to directly interact with the E3 ligase TRAF6. As Tyr77Ala or Tyr77Ala/Gln81Ala/Arg85Ala/Val158Ala attempts to prevent the interaction between DERL1 and TRAF domain of TRAF6, resulted in a significant reduction in K63-ubiquitinated p-AKT production. However, mutations in Gln81Ala, Arg85Ala, or Val158Ala could possibly interrupt with these processes. CONCLUSIONS: Our data confirm that mediation of the miR-181c-5p/DERL1 pathway by TRAF6-linked AKT K63 ubiquitination holds one of the clues to set our focus on toward meeting the therapeutic goals of BRCA.

7.
Macromol Rapid Commun ; 45(5): e2300506, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38134364

RESUMO

Condensation of 3,3'-diamino-2,2'-ethylene-bridged azobenzene with 1,2,4,5-tetrakis-(4-formylphenyl) benzene produces a visible light responsive porous 2D covalent organic framework, COF-bAzo-TFPB, with a large surface area, good crystallinity, and thermal and chemical stability. The results demonstrate that the elaborated designed linker can make azo unit on the COF-bAzo-TFPB skeleton undergo reversible photoisomerization. This work expands the application scope of covalent organic frameworks in photo-controlled release, uptake of guest molecules, dynamic photoswitching, and UV-sensitive functions.


Assuntos
Estruturas Metalorgânicas , Compostos Azo , Benzeno , Luz
8.
Clin Lab ; 70(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38213227

RESUMO

BACKGROUND: Platelets are overactive in type 2 diabetes mellitus (T2DM). This study analyzed the relationship between platelet index and lipid metabolism, coagulation function, and inflammation in T2DM patients. METHODS: This study enrolled 60 T2DM patients and 60 healthy subjects (age- and gender-matched). Mean platelet volume (MPV) and platelet distribution width (PDW) were evaluated, and their associations with lipid metabolism (TG and HDL-C), coagulation function (vWF and PAI-1), and inflammation (IL-6 and TNF-α) were analyzed. RESULTS: T2DM patients had increased MPV and PDW. Furthermore, the platelet index was correlated with the levels of TG, HDL-C, vWF, PAI-1, IL-6, and TNF-α. CONCLUSIONS: MPV and PDW are increased in T2DM patients. Moreover, platelet index was associated with lipid metabolism disorder, coagulation dysfunction, and inflammatory response in T2DM patients.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Contagem de Plaquetas , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo dos Lipídeos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Fator de von Willebrand/metabolismo , Plaquetas/metabolismo , Volume Plaquetário Médio , Inflamação/metabolismo
9.
Aging Ment Health ; : 1-9, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902974

RESUMO

OBJECTIVES: Little is known about the heterogeneity and transitions between psychological adaptation patterns in Chinese older internal migrants. This study addressed two questions: (a) Do distinct patterns of psychological adaptation exist among Chinese older internal migrants? (b) If so, what factors predict different trajectories? METHOD: The study drew on two waves of data and involved 405 older internal migrants into Nanjing, China. First, a latent transition analysis was performed to visualize the different patterns of psychological adaptation. Second, an ecological model of resilience was used to identify the factors explaining the differences between adaptation patterns. RESULTS: Three main trajectories of psychological adaptation among Chinese older internal migrants over time were: recovery, stability and deterioration. Adaptation trajectories were associated with age, gender, length of stay, psychological resilience, self-esteem, family support, social participation, and living with a spouse. CONCLUSION: Chinese older internal migrants undertake heterogeneous psychological adaptation trajectories, and their positive adaptation is closely associated with coping resources. Our data may provide references for the identification of vulnerable older internal migrants, as well as the making of targeted interventions.

10.
Environ Toxicol ; 39(5): 3040-3054, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38314887

RESUMO

Studies on the effects of glyphosate (GlyP) and glyphosate-based herbicides (GBHs) on cerebellar development are extremely limited. This study examined the effects of maternal exposure to GlyP and GBH on rat cerebellar development in male offspring. From day 6 of gestation until day 21 postpartum at weaning, dams were given GlyP at 1.5% or 3.0% in diet or GBH at 1.0% in drinking water (corresponding to 0.36% GlyP). At weaning, GBH exposure was linked to increased numbers of DCX+ migrating granule cells in the cortex and TUNEL+ apoptotic cells in the internal granular layer (IGL), suggesting the disappearance of mismigrated granule cells via apoptosis. GBH also upregulated Nr4a3 and downregulated Cdk5 in the cerebellar vermis, suggesting a causal relation with the impaired granule cell development at this time. GlyP (3.0%) tended to increase in the number of DCX+ migrating granule cells in the IGL and upregulated Nr4a3 at weaning. Both compounds also upregulated genes related to granule cell migration (Astn1, Astn2, Nfia, and/or Nfix) at weaning and in adulthood, which might be an ameliorative response to delayed granule cell migration. Moreover, GBH induced Purkinje cell misalignment at weaning, which could be the result of delayed granule cell migration. In adulthood, GBH was associated with upregulation of the reelin signaling-related genes Reln, Dab1, and Efnb1, suggesting a compensatory response to Purkinje cell misalignment. GlyP induced the same gene expression changes. These results suggest that GBH reversibly disrupts cerebellar development, primarily by targeting granule cell migration and differentiation, whereas GlyP exhibited similar toxic potential as GBH.


Assuntos
Glifosato , Herbicidas , Humanos , Feminino , Ratos , Masculino , Animais , Herbicidas/toxicidade , Exposição Materna/efeitos adversos , Glicina/toxicidade , Diferenciação Celular
11.
Phytochem Anal ; 35(2): 271-287, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37779218

RESUMO

INTRODUCTION: Coptidis Rhizoma (CR) is one of the most frequently used herbs to treat ulcerative colitis (UC) and is often processed before usage. However, the composition changes and therapeutic effects of CR before and after processing in the treatment of UC are still unclear. OBJECTIVE: The purpose of the study is to explore the chemical components and therapeutic effects of crude and processed CR. MATERIAL AND METHODS: CR was processed according to the 2020 version of the Chinese Pharmacopoeia. The liquid chromatography-mass spectrometry (LC-MS) and multivariate statistical analysis were used to screen the different compounds before and after processing. The network pharmacological prediction was carried out. The mechanism and therapeutic effects between crude and processed CR were verified by using dextran sulphate sodium-induced UC mice assay. RESULTS: Ten compounds distinguish crude and processed CR based on multivariate statistical analysis. Network pharmacology predicts that the 10 compounds mainly play a role through TNF-α and IL-6 targets and PI3K/Akt and HIF-1 signalling pathways, and these results are verified by molecular biology experiments. For IL-6, IL-10 and TNF-α inflammatory factors, CR is not effective, while CR stir-fried with Evodiae Fructus (CRFE) and ginger juice (CRGJ) are. For PI3K/p-Akt, Cleaved caspase3, NF- κBp65 and HIF-1α signalling pathways, CR has therapeutic effects, while CRFE and CRGJ are significant. CONCLUSION: Overall, CRFE and CRGJ show better effects in treating UC. The chemical changes of processing and the efficacy of processed CR are correlated, which provides a scientific basis for the clinical use of crude and processed CR.


Assuntos
Colite Ulcerativa , Medicamentos de Ervas Chinesas , Camundongos , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Farmacologia em Rede , Fator de Necrose Tumoral alfa , Interleucina-6 , Fosfatidilinositol 3-Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/uso terapêutico
12.
Sensors (Basel) ; 24(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931746

RESUMO

This paper introduces BiLSTM-MLAM, a novel multi-scale time series prediction model. Initially, the approach utilizes bidirectional long short-term memory to capture information from both forward and backward directions in time series data. Subsequently, a multi-scale patch segmentation module generates various long sequences composed of equal-length segments, enabling the model to capture data patterns across multiple time scales by adjusting segment lengths. Finally, the local attention mechanism enhances feature extraction by accurately identifying and weighting important time segments, thereby strengthening the model's understanding of the local features of the time series, followed by feature fusion. The model demonstrates outstanding performance in time series prediction tasks by effectively capturing sequence information across various time scales. Experimental validation illustrates the superior performance of BiLSTM-MLAM compared to six baseline methods across multiple datasets. When predicting the remaining life of aircraft engines, BiLSTM-MLAM outperforms the best baseline model by 6.66% in RMSE and 11.50% in MAE. In the LTE dataset, it achieves RMSE improvements of 12.77% and MAE enhancements of 3.06%, while in the load dataset, it demonstrates RMSE enhancements of 17.96% and MAE improvements of 30.39%. Additionally, ablation experiments confirm the positive impact of each module on prediction accuracy. Through segment length parameter tuning experiments, combining different segment lengths has resulted in lower prediction errors, affirming the effectiveness of the multi-scale fusion strategy in enhancing prediction accuracy by integrating information from multiple time scales.

13.
Nano Lett ; 23(6): 2081-2086, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36854101

RESUMO

Precisely organizing functional molecules of the catalytic cores in natural enzymes to promote catalytic performance is a challenging goal in respect to artificial enzyme construction. In this work, we report a DNA-scaffolded mimicry of the catalytic cores of hydrolases, which showed a controllable and hierarchical acceleration of the hydrolysis of fluorescein diacetate (FDA). The results revealed that the efficiency of hydrolysis was greatly increased by the DNA-scaffold-induced proximity of catalytic amino acid residues (histidine and arginine) with up to 4-fold improvement relative to the free amino acids. In addition, DNA-scaffolded one-dimensional and two-dimensional assemblies of multiple catalytic cores could further accelerate the hydrolysis. This work demonstrated that the DNA-guided assembly could be used as a promising platform to build enzyme mimics in a programmable and hierarchical way.


Assuntos
DNA , Hidrolases , Domínio Catalítico , Hidrólise , DNA/química , Catálise
14.
Int Orthop ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777971

RESUMO

PURPOSE: To compare the clinical efficacy of mini-open (air/water medium) endoscopy-assisted anterior cervical discectomy and fusion (MOEA-ACDF) and anterior cervical decompression and fusion (ACDF) for cervical spondylotic myelopathy (CSM). METHODS: This study retrospectively analysed the clinical data of CSM patients who received surgical treatment from January 1, 2020, to December 31, 2022. Patients were divided into two groups according to the surgical method: the MOEA-ACDF group and the ACDF group. The preoperative and postoperative imaging results at one week and the last follow-up examination were compared between the two groups. The Japanese Orthopaedic Association (JOA) score, visual analogue scale (VAS) score and neck disability index (NDI) score were used to evaluate the clinical outcomes preoperatively, one week postoperatively and at the last follow-up examination. The minimum follow-up duration was 12 months. RESULTS: A total of 131 CSM patients who underwent surgery at our institution were included, including 61 patients in the MOEA-ACDF group and 70 patients in the ACDF group. In the MOEA-ACDF group, the postoperative C2-C7 Cobb angle and HAVB were significantly greater than the preoperative values (P < 0.05). In the ACDF group, the postoperative C2-C7 Cobb angle was also significantly greater than the preoperative value, and the C2-C7 ROM and HAVB significantly decreased (P < 0.05). The postoperative neurological function of the patients in both groups improved, and the postoperative VAS score and NDI score significantly decreased. Compared with ACDF, MOEA-ACDF is associated with a significantly larger postoperative C2-C7 Cobb angle and significantly better C2-C7 ROM and HAVB, as well as better clinical efficacy (P < 0.05). CONCLUSIONS: MOEA-ACDF combines endoscopic systems with ACDF technology to treat CSM, but its clinical efficacy is not inferior to that of ACDF in the short- to intermediate-term. It can effectively and safely restore the cervical intervertebral height, physiological curvature, and range of motion.

15.
J Fish Biol ; 104(2): 484-496, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37344383

RESUMO

A new species, Sinocyclocheilus xingyiensis, is described based on specimens collected from a karst cave in Guizhou Province, China. The authors used an integrated taxonomic approach, including morphological and molecular data, to identify the new species as a member of the Sinocyclocheilu angularis group, and it can be distinguished from all other members of this group by a combination of the following features: two pairs of long barbels and long pectoral fins, 42-46 lateral-line scales, 7 (13-14) on outer (inner) side of the first gill arch and 35 (14-15 + 4 + 16 - 17) vertebrae. Phylogenetic analyses based on the cytochrome b (cyt b) gene fragment suggest that S. xingyiensis is a sister lineage to Sinocyclocheilus flexuosdorsalis. The genetic distance (Kimura 2-parameter) between the S. xingyiensis and S. angularis groups of Sinocyclocheilus species based on cyt b gene fragment ranged from 1.2% to 15.4%.


Assuntos
Cyprinidae , Cipriniformes , Animais , Cipriniformes/genética , Cipriniformes/anatomia & histologia , Rios , Filogenia , Citocromos b/genética , Cyprinidae/genética , Cyprinidae/anatomia & histologia , China
16.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255910

RESUMO

Nuclear factor Y (NF-Y) is a class of transcription factors consisting of NF-YA, NF-YB and NF-YC subunits, which are widely distributed in eukaryotes. The NF-YC subunit regulates plant growth and development and plays an important role in the response to stresses. However, there are few reports on this gene subfamily in tea plants. In this study, nine CsNF-YC genes were identified in the genome of 'Longjing 43'. Their phylogeny, gene structure, promoter cis-acting elements, motifs and chromosomal localization of these gene were analyzed. Tissue expression characterization revealed that most of the CsNF-YCs were expressed at low levels in the terminal buds and at relatively high levels in the flowers and roots. CsNF-YC genes responded significantly to gibberellic acid (GA) and abscisic acid (ABA) treatments. We further focused on CsNF-YC6 because it may be involved in the growth and development of tea plants and the regulation of response to abiotic stresses. The CsNF-YC6 protein is localized in the nucleus. Arabidopsis that overexpressed CsNF-YC6 (CsNF-YC6-OE) showed increased seed germination and increased root length under ABA and GA treatments. In addition, the number of cauline leaves, stem lengths and silique numbers were significantly higher in overexpressing Arabidopsis lines than wild type under long-day growth conditions, and CsNF-YC6 promoted primary root growth and increased flowering in Arabidopsis. qPCR analysis showed that in CsNF-YC6-OE lines, flowering pathway-related genes were transcribed at higher levels than wild type. The investigation of the CsNF-YC gene has unveiled that CsNF-YC6 plays a pivotal role in plant growth, root and flower development, as well as responses to abiotic stress.


Assuntos
Arabidopsis , Camellia sinensis , Giberelinas , Camellia sinensis/genética , Ácido Abscísico/farmacologia , Chá
17.
J Environ Manage ; 359: 121034, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703649

RESUMO

Frequent algal blooms cause algal cells and their algal organic matter (AOM) to become critical precursors of disinfection by-products (DBPs) during water treatment. The presence of bromide ion (Br-) in water has been demonstrated to affect the formation laws and species distribution of DBPs. However, few researchers have addressed the formation and toxicity alteration of halonitromethanes (HNMs) from algae during disinfection in the presence of Br-. Therefore, in this work, Chlorella vulgaris was selected as a representative algal precursor to investigate the formation and toxicity alteration of HNMs during UV/chloramination involving Br-. The results showed that the formation concentration of HNMs increased and then decreased during UV/chloramination. The intracellular organic matter of Chlorella vulgaris was more susceptible to form HNMs than the extracellular organic matter. When the Br-: Cl2 mass ratio was raised from 0.004 to 0.08, the peak of HNMs total concentration increased 33.99%, and the cytotoxicity index and genotoxicity index of HNMs increased 67.94% and 22.80%. Besides, the formation concentration and toxicity of HNMs increased with increasing Chlorella vulgaris concentration but decreased with increasing solution pH. Possible formation pathways of HNMs from Chlorella vulgaris during UV/chloramination involving Br- were proposed based on the alteration of nitrogen species and fluorescence spectrum analysis. Furthermore, the formation laws of HNMs from Chlorella vulgaris in real water samples were similar to those in deionized water samples. This study contributes to a better comprehension of HNMs formation from Chlorella vulgaris and provides valuable information for water managers to reduce hazards associated with the formation of HNMs.


Assuntos
Brometos , Chlorella vulgaris , Chlorella vulgaris/efeitos dos fármacos , Brometos/química , Brometos/toxicidade , Desinfecção , Purificação da Água , Raios Ultravioleta
18.
J Environ Sci (China) ; 138: 684-696, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135431

RESUMO

Aerosol liquid water content (ALWC) plays an important role in secondary aerosol formation. In this study, a whole year field campaign was conducted at Shanxi in north Zhejiang Province during 2021. ALWC estimated by ISORROPIA-II was then investigated to explore its characteristics and relationship with secondary aerosols. ALWC exhibited a highest value in spring (66.38 µg/m3), followed by winter (45.08 µg/m3), summer (41.64 µg/m3), and autumn (35.01 µg/m3), respectively. It was supposed that the secondary inorganic aerosols (SIA) were facilitated under higher ALWC conditions (RH > 80%), while the secondary organic species tended to form under lower ALWC levels. Higher RH (> 80%) promoted the NO3- formation via gas-particle partitioning, while SO42- was generated at a relative lower RH (> 50%). The ALWC was more sensitive to NO3- (R = 0.94) than SO42- (R = 0.90). Thus, the self-amplifying processes between the ALWC and SIA enhanced the particle mass growth. The sensitivity of ALWC and OX (NO2 + O3) to secondary organic carbon (SOC) varied in different seasons at Shanxi, more sensitive to aqueous-phase reactions (daytime R = 0.84; nighttime R = 0.54) than photochemical oxidation (daytime R = 0.23; nighttime R = 0.41) in wintertime with a high level of OX (daytime: 130-140 µg/m3; nighttime: 100-140 µg/m3). The self-amplifying process of ALWC and SIA and the aqueous-phase formation of SOC will enhance aerosol formation, contributing to air pollution and reduction of visibility.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/análise , Água/química , Rios/química , Monitoramento Ambiental , Estações do Ano , Carbono/análise , Aerossóis/análise , China
19.
Plant J ; 110(4): 1144-1165, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35277905

RESUMO

Tea (Camellia sinensis) is concocted from tea plant shoot tips that produce catechins, caffeine, theanine, and terpenoids, which collectively determine the rich flavors and health benefits of the infusion. However, little is known about the integrated regulation of shoot tip development and characteristic secondary metabolite biosynthesis in tea plants. Here, we demonstrate that MYB transcription factors (TFs) play key and yet diverse roles in regulating leaf and stem development, secondary metabolite biosynthesis, and environmental stress responses in tea plants. By integrating transcriptomic and metabolic profiling data in different tissues at a series of developmental stages or under various stress conditions, alongside biochemical and genetic analyses, we predicted the MYB TFs involved in regulating shoot development (CsMYB2, 98, 107, and 221), epidermal cell initiation (CsMYB184, 41, 139, and 219), stomatal initiation (CsMYB113 and 153), and the biosynthesis of flavonoids (including catechins, anthocyanins, and flavonols; CsMYB8 and 99), caffeine (CsMYB85 and 86), theanine (CsMYB9 and 49), carotenoids (CsMYB110), mono-/sesquiterpenoid volatiles (CsMYB68, 147, 148, and 193), lignin (CsMYB164 and 192), and indolic compounds (CsMYB139, 162, and 198), as well as the MYB TFs that are likely involved in hormone signaling-mediated environmental stress and defense responses. We characterized the functions of some key MYBs in regulating flavonoid and carotenoid biosynthesis for tea quality and flavor. This study provides a cross-family analysis of MYBs in tea alongside new insights into the coordinated regulation of tea plant shoot development and secondary metabolism, paving the way towards understanding of tea quality trait formation and genetic improvement of quality tea plants.


Assuntos
Camellia sinensis , Catequina , Antocianinas/metabolismo , Cafeína/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Catequina/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolismo Secundário/genética , Chá/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Mol Biol Evol ; 39(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36108094

RESUMO

The recent development of artificial intelligence provides us with new and powerful tools for studying the mysterious relationship between organism evolution and protein evolution. In this work, based on the AlphaFold Protein Structure Database (AlphaFold DB), we perform comparative analyses of the proteins of different organisms. The statistics of AlphaFold-predicted structures show that, for organisms with higher complexity, their constituent proteins will have larger radii of gyration, higher coil fractions, and slower vibrations, statistically. By conducting normal mode analysis and scaling analyses, we demonstrate that higher organismal complexity correlates with lower fractal dimensions in both the structure and dynamics of the constituent proteins, suggesting that higher functional specialization is associated with higher organismal complexity. We also uncover the topology and sequence bases of these correlations. As the organismal complexity increases, the residue contact networks of the constituent proteins will be more assortative, and these proteins will have a higher degree of hydrophilic-hydrophobic segregation in the sequences. Furthermore, by comparing the statistical structural proximity across the proteomes with the phylogenetic tree of homologous proteins, we show that, statistical structural proximity across the proteomes may indirectly reflect the phylogenetic proximity, indicating a statistical trend of protein evolution in parallel with organism evolution. This study provides new insights into how the diversity in the functionality of proteins increases and how the dimensionality of the manifold of protein dynamics reduces during evolution, contributing to the understanding of the origin and evolution of lives.


Assuntos
Inteligência Artificial , Proteoma , Bases de Dados de Proteínas , Filogenia , Proteoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA