Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Sci Food Agric ; 104(4): 2215-2224, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37938140

RESUMO

BACKGROUND: Laboratory-scale experiments have shown that treatment with selective lignin-degrading white-rot fungi improves the nutritional value and ruminal degradability of lignocellulosic biomass (LCB). However, the lack of effective field-applicable pasteurization methods has long been recognized as a major obstacle for scaling up the technique for fungal treatment of large quantities of LCB for animal feeding. In this study, wheat straw (an LCB substrate) was subjected to four field-applicable pasteurization methods - hot-water, formaldehyde fumigation, steam, and hydrated lime - and cultured with Pleurotus ostreatus grain spawn for 10, 20, and 30 days under solid-state fermentation. Samples of untreated, pasteurized but non-inoculated and fungus-treated straws were analyzed for chemical composition, aflatoxin B1 (AFB1 ), and in vitro dry matter digestibility (IVDMD), in vitro total gas (IVGP), methane (CH4 ), and volatile fatty acid (VFA) production. RESULTS: During the 30-day fungal treatment, steam and lime pasteurized straws had the greatest loss of lignin, resulting in marked improvements in crude protein (CP), IVDMD, IVGP, and total VFAs. Irrespective of the pasteurization method, the increase in IVDMD during fungal treatment was linearly (R2 = 0.77-0.92) related to lignin-loss in the substrate during fungal treatment. The CH4 production of the fungus-treated straw was not affected by the pasteurization methods. Aflatoxin B1 was within the safe level (<5 µg kg-1 ) in all pasteurized, fungus treated straws. CONCLUSION: Steam and lime were promising field-applicable pasteurization techniques to produce nutritionally improved fungus-treated wheat straw to feed ruminants. Lime pasteurization was more economical and did not require expensive energy inputs. © 2023 Society of Chemical Industry.


Assuntos
Compostos de Cálcio , Lignina , Óxidos , Pleurotus , Animais , Lignina/metabolismo , Biomassa , Aflatoxina B1/metabolismo , Vapor , Ruminantes/metabolismo , Pleurotus/metabolismo , Ração Animal/análise , Fermentação
2.
Br J Nutr ; 127(8): 1121-1131, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-34121640

RESUMO

This study was designed to investigate the effects of dietary starch structure on muscle protein synthesis and gastrointestinal amino acid (AA) transport and metabolism of goats. Twenty-seven Xiangdong black female goats (average body weight = 9·00 ± 1·12 kg) were randomly assigned to three treatments, i.e., fed a T1 (normal maize 100 %, high amylose maize 0 %), T2 (normal maize 50 %, high amylose maize 50 %) and T3 (normal maize 0 %, high amylose maize 100 %) diet for 35 d. All AA in the ileal mucosa were decreased linearly as amylose:amylopectin increased in diets (P < 0·05). The plasma valine (linear, P = 0·03), leucine (linear, P = 0·04) and total AA content (linear, P = 0·03) increased linearly with the increase in the ratio of amylose in the diet. The relative mRNA levels of solute carrier family 38 member 1 (linear, P = 0·01), solute carrier family 3 member 2 (linear, P = 0·02) and solute carrier family 38 member 9 (linear, P = 0·02) in the ileum increased linearly with the increase in the ratio of amylose in the diet. With the increase in the ratio of amylose:amylopectin in the diet, the mRNA levels of acetyl-CoA dehydrogenase B (linear, P = 0·04), branched-chain amino acid transferase 1 (linear, P = 0·02) and branched-chain α-keto acid dehydrogenase complex B (linear, P = 0·01) in the ileum decreased linearly. Our results revealed that the protein abundances of phosphorylated mammalian target of rapamycin (p-mTOR) (P < 0·001), phosphorylated 4E-binding protein 1 (P < 0·001) and phosphorylated ribosomal protein S6 kinases 1 (P < 0·001) of T2 and T3 were significantly higher than that of T1. In general, a diet with a high amylose ratio could reduce the consumption of AA in the intestine, allowing more AA to enter the blood to maintain higher muscle protein synthesis through the mTOR pathway.


Assuntos
Amilopectina , Amilose , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Amilopectina/farmacologia , Amilose/farmacologia , Ração Animal/análise , Animais , Dieta/veterinária , Feminino , Cabras/metabolismo , Íleo/metabolismo
3.
Med Sci Monit ; 24: 2109-2118, 2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-29629712

RESUMO

BACKGROUND L-theanine is a non-protein amino acid in green tea, and its hepatoprotection and neuroprotection have been verified. However, whether L-theanine can prevent cardiomyocytes from apoptosis is unclear yet. This study evaluated the protective effects of L-theanine on H2O2-induced heart injury in vitro. MATERIAL AND METHODS The certified H9C2 cells were pretreated with L-theanine (0 mM, 4 mM, 8 mM, and 16 mM) for 24 h, followed by 160 µM H2O2 solution for 4 h. The cell viability and antioxidant indices were assayed. Quantitative evaluation of apoptosis was performed by flow cytometric analysis. Nuclear morphology of the cells was monitored by 4',6-diamidino-2-phenylindole staining. Expression of Caspase-3, poly ADP-ribose polymerase (PARP), c-Jun N-terminal kinase (JNK), and mitogen-activated protein kinase p38 was assayed by Western blot. RESULTS Compared to the H2O2 treatment, all doses of L-theanine treatments increased the cell viability, glutathione level, and the activities of glutathione peroxidase and superoxide dismutase (P<0.001). The contents of reactive oxygen species, nitric oxide, and oxidized glutathione were decreased by L-theanine treatments (P<0.001). Meanwhile, L-theanine treatments decreased the apoptosis ratio of H2O2-induced H9C2 cells (P<0.001). Pro-Caspase-3 expression was upregulated and cleavaged-PARP expression was inhibited by L-theanine (P<0.001). However, the phosphorylation of JNK and p38 was not affected by L-theanine treatments (P>0.05). CONCLUSIONS These data indicate that L-theanine pretreatment prevents H2O2-induced apoptosis in H9C2 cells, probably via antioxidant capacity improvement. Therefore, it might be a promising potential drug candidate for prophylaxis of ischemia/reperfusion-induced heart diseases.


Assuntos
Apoptose/efeitos dos fármacos , Glutamatos/metabolismo , Animais , Antioxidantes/farmacologia , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Glutamatos/farmacologia , Glutationa/análise , Glutationa Peroxidase/análise , Peróxido de Hidrogênio/efeitos adversos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Substâncias Protetoras/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/análise , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Med Sci Monit ; 24: 3348-3356, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29782483

RESUMO

BACKGROUND The cortex of Magnolia officinalis has long been used as an element of traditional Chinese medicine for the treatment of anxiety, chronic bronchitis, and gastrointestinal dysfunction. This study aimed to elucidate the underlying mechanism of its functional ingredients (magnolol and honokiol) in modifying the secretion and absorption homeostasis and protecting mucosal integrity in an Enterotoxigenic Escherichia coli (ETEC)-induced diarrhea mouse model. MATERIAL AND METHODS This study established a diarrhea mouse model infected by ETEC at a dosage of 0.02 ml/g live body weight (BW) in vivo. Magnolol or honokiol was followed by an intraperitoneal administration at dosages of 100, 300, and 500 mg/kg BW according to a 3×3 factorial arrangement. The useful biomarkers for evaluating the integrity of intestinal tract and histologic injury were analyzed and morphological development (including villus height, crypt depth, and ratio of villus height to crypt depth) and the expressions of inflammatory cytokines were determined by real-time PCR. RESULTS The results showed that magnolol and honokiol (500 mg/kg BW) reduced the concentrations of NO, DAO, and DLA, and iNOS activity, and the mRNA expressions of the interferon gamma (IFN-γ) and interleukin 10 (IL-10), and inhibited intestinal epithelial cell apoptosis. Magnolol and honokiol (300 mg/kg BW) elongated the villus height and crypt depth and decreased the number of goblet cells and the ratio of villus height to crypt depth. CONCLUSIONS The current results indicate that magnolol and honokiol enhance the intestinal anti-inflammatory capacities, elongate the villus height and crypt depth, and reduce goblet cell numbers to inhibit the intestinal epithelium apoptosis and effectively protect the intestinal mucosa. These results show that magnolol and honokiol protect the intestinal mucosal integrity and regulate gastrointestinal dysfunction.


Assuntos
Apoptose/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Escherichia coli Enterotoxigênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Lignanas/farmacologia , Administração Oral , Animais , Compostos de Bifenilo/administração & dosagem , Citocinas/genética , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/fisiopatologia , Lignanas/administração & dosagem , Camundongos , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo
5.
J Membr Biol ; 249(6): 743-756, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27469350

RESUMO

Free fatty acids (FFAs) in plasma are essential substrates for de novo synthesis of milk fat, or directly import into mammary cells. The physico-chemical properties of mammary cells membrane composition affected by FFAs with different chain lengths and saturability are unclear yet. Employing GC, FTIR and fluorescence spectroscopy, the adsorption capacity, phospholipids content, membrane proteins conformation, lipid peroxidation product, and free sulfhydryl of plasma membranes (PMs) interacted with different FFAs were determined. The mammary cells PMs at 38 and 39.5 °C showed different adsorption capacities: acetic acid (Ac) > stearic acid (SA) > ß-hydroxybutyric acid (BHBA) > trans10, cis12 CLA. In the FTIR spectrum, the major adsorption peaks appeared at 2920 and 2850 cm-1 for phospholipids, and at 1628 and 1560 cm-1 for membrane proteins. The intensities of PMs-FFAs complexes were varied with the FFAs species and their initial concentrations. The ß-sheet and turn structures of membrane proteins were transferred into random coil and α-helix after BHBA, SA and trans10, cis12 CLA treatments compared with Ac treatment. The quenching effects on the fluorescence of endogenous membrane protein, 1, 8-ANS, NBD-PE, and DHPE entrapped in PMs by LCFA were different from those of short chain FFAs. These results indicate that the adsorption of FFAs could change membrane protein conformation and polarity of head group in phospholipids. This variation of the mammary cells PMs was regulated by carbon chain length and saturability of FFAs.


Assuntos
Ácidos Graxos/metabolismo , Glândulas Mamárias Animais/metabolismo , Proteínas de Membrana/metabolismo , Fosfolipídeos/metabolismo , Animais , Bovinos , Membrana Celular/metabolismo , Ácidos Graxos/química , Ácidos Graxos não Esterificados/metabolismo , Feminino , Proteínas de Membrana/química , Fosfolipídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
6.
Med Sci Monit ; 22: 662-9, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26922362

RESUMO

BACKGROUND This study aimed to investigate the regulatory effects of L-theanine on secretion of immune cytokines, hormones, and neurotransmitters, and mRNA expression of phospholipase C (PLC) in rats, and to explore its regulatory mechanism in immune function. MATERIAL AND METHODS Sixty-four Sprague-Dawley rats received daily intragastric infusion of different doses of L-theanine solution [0, 50 (LT), 200 (MT), and 400 (HT) mg/kg BW]. Cytokines, immunoglobulins, and hormones in the serum, neurotransmitters, and mRNA expression of PLC in the relevant tissues were assayed. RESULTS L-theanine administration increased the splenic organ index and decreased the contents of ILs-4/6/10 and the ratio of IL-4/IFN-γ in the serum. High-dose L-theanine administration increased the levels of dopamine and 5-hydroxytryptamine in the pituitary and hippocampus, resulting in decrease in corticosterone level in the serum. L-theanine administration decreased the mRNA expressions of PLC isomers in the liver and PLC-γ1 and PLC-δ1 in the spleen. Interestingly, mRNA expressions of PLC-ß1 in the spleen and PLC isomers mRNA in the heart were up-regulated by L-theanine administration. CONCLUSIONS Administration of 400 mg/kg BWL-theanine improved immune function of the rats by increasing the splenic weight, altering the Th2/Th1 cytokine balance, decreasing the corticosterone level in the serum, elevating dopamine and 5-hydroxytryptamine in the brain, and regulating the mRNA expression of PLC isomers in the heart.


Assuntos
Citocinas/sangue , Glutamatos/farmacologia , Imunidade/efeitos dos fármacos , Miocárdio/enzimologia , Neurotransmissores/metabolismo , Células Th1/imunologia , Células Th2/imunologia , Fosfolipases Tipo C/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica , Glutamatos/administração & dosagem , Masculino , Especificidade de Órgãos/efeitos dos fármacos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Células Th1/efeitos dos fármacos , Células Th2/efeitos dos fármacos , Fosfolipases Tipo C/genética
7.
Arch Anim Nutr ; 70(3): 224-38, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27032031

RESUMO

This study was designed to assess the effectiveness of dietary cellulase (243 U/g, derived from Neocallimastix patriciarum) and a Saccharomyces cerevisiae fermentation product (yeast product) on ruminal fermentation characteristics, enteric methane (CH4) emissions and methanogenic community in growing goats. The experiment was conducted in a 5 × 5 Latin square design using five Xiangdong black wether goats. The treatments included a Control and two levels of cellulase (0.8 g and 1.6 g/kg dry matter intake (DMI), i.e. 194 U/kg and 389 U/kg DMI, respectively) crossed over with two levels (6 g or 12 g/kg DMI) of the yeast product. There were no significant differences regarding feed intake, apparent digestibility of organic matter, neutral detergent fibre and acid detergent fibre among all the treatments. In comparison with the Control, the ruminal ammonia N concentration was decreased (p = 0.001) by cellulase and yeast product addition. The activities of carboxymethylcellulase and xylanase were decreased after cellulase addition. Moreover, dietary cellulase and yeast product addition led to a significant reduction (p < 0.05) of enteric CH4 emissions although the diversity and copy numbers of methanogens among treatments were not dissimilar. The present results indicate that the combination of cellulase and yeast fermentation product can reduce the production of CH4 energy and mitigate the enteric CH4 emissions to a certain degree.


Assuntos
Celulase/metabolismo , Cabras/fisiologia , Metano/metabolismo , Neocallimastix/química , Saccharomyces cerevisiae/química , Ração Animal/análise , Animais , Celulase/química , Dieta/veterinária , Suplementos Nutricionais/análise , Fermentação , Proteínas Fúngicas/administração & dosagem , Proteínas Fúngicas/química , Microbioma Gastrointestinal/fisiologia , Cabras/microbiologia , Masculino , Rúmen/microbiologia , Rúmen/fisiologia
8.
Asian-Australas J Anim Sci ; 29(2): 230-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26732448

RESUMO

Information on the effects of different yeast species on ruminal fermentation is limited. This experiment was conducted in a 3×4 factorial arrangement to explore and compare the effects of addition of three different live yeast species (Candida utilis 1314, Saccharomyces cerevisiae 1355, and Candida tropicalis 1254) at four doses (0, 0.25×10(7), 0.50×10(7), and 0.75×10(7) colony-forming unit [cfu]) on in vitro gas production kinetics, fiber degradation, methane production and ruminal fermentation characteristics of maize stover, and rice straw by mixed rumen microorganisms in dairy cows. The maximum gas production (Vf), dry matter disappearance (IVDMD), neutral detergent fiber disappearance (IVNDFD), and methane production in C. utilis group were less (p<0.01) than other two live yeast supplemented groups. The inclusion of S. cerevisiae reduced (p<0.01) the concentrations of ammonia nitrogen (NH3-N), isobutyrate, and isovalerate compared to the other two yeast groups. C. tropicalis addition generally enhanced (p<0.05) IVDMD and IVNDFD. The NH3-N concentration and CH4 production were increased (p<0.05) by the addition of S. cerevisiae and C. tropicalis compared with the control. Supplementation of three yeast species decreased (p<0.05) or numerically decreased the ratio of acetate to propionate. The current results indicate that C. tropicalis is more preferred as yeast culture supplements, and its optimal dose should be 0.25×10(7) cfu/500 mg substrates in vitro.

9.
Asian-Australas J Anim Sci ; 29(4): 500-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26949950

RESUMO

This study was conducted to investigate the effects of Momordica charantia saponin (MCS) on ruminal fermentation of maize stover and abundance of selected microbial populations in vitro. Five levels of MCS supplements (0, 0.01, 0.06, 0.30, 0.60 mg/mL) were tested. The pH, NH3-N, and volatile fatty acid were measured at 6, 24, 48 h of in vitro mixed incubation fluids, whilst the selected microbial populations were determined at 6 and 24 h. The high dose of MCS increased the initial fractional rate of degradation at t-value = 0 (FRD0) and the fractional rate of gas production (k), but decreased the theoretical maximum of gas production (V F) and the half-life (t0.5) compared with the control. The NH3-N concentration reached the lowest concentration with 0.01 mg MCS/mL at 6 h. The MSC inclusion increased (p<0.001) the molar proportion of butyrate, isovalerate at 24 h and 48 h, and the molar proportion of acetate at 24 h, but then decreased (p<0.05) them at 48 h. The molar proportion of valerate was increased (p<0.05) at 24 h. The acetate to propionate ratio (A/P; linear, p<0.01) was increased at 24 h, but reached the least value at the level of 0.30 mg/mL MCS. The MCS inclusion decreased (p<0.05) the molar proportion of propionate at 24 h and then increased it at 48 h. The concentration of total volatile fatty acid was decreased (p<0.001) at 24 h, but reached the greatest concentration at the level of 0.01 mg/mL and the least concentration at the level of 0.60 mg/mL. The relative abundance of Ruminococcus albus was increased at 6 h and 24 h, and the relative abundance of Fibrobacter succinogenes was the lowest (p<0.05) at 0.60 mg/mL at 6 h and 24 h. The relative abundance of Butyrivibrio fibrisolvens and fungus reached the greatest value (p<0.05) at low doses of MCS inclusion and the least value (p<0.05) at 0.60 mg/mL at 24 h. The present results demonstrates that a high level of MCS quickly inhibits in vitro fermentation of maize stover, while MCS at low doses has the ability to modulate the ruminal fermentation pattern by regulating the number of functional rumen microbes including cellulolytic bacteria and fungi populations, and may have potential as a feed additive applied in the diets of ruminants.

10.
Br J Nutr ; 113(6): 888-900, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25716279

RESUMO

The aim of the present study was to describe age-related changes in anatomic, functional and microbial variables during the rumen development process, as affected by the feeding system (supplemental feeding v. grazing), in goats. Goats were slaughtered at seven time points that were selected to reflect the non-rumination (0, 7 and 14 d), transition (28 and 42 d) and rumination (56 and 70 d) phases of rumen development. Total volatile fatty acid (TVFA) concentration (P= 0·002), liquid-associated bacterial and archaeal copy numbers (P< 0·01) were greater for supplemental feeding v. grazing, while rumen pH (P< 0·001), acetate molar proportion (P= 0·003) and solid-associated microbial copy numbers (P< 0·05) were less. Rumen papillae length (P= 0·097) and extracellular (P= 0·093) and total (P= 0·073) protease activity potentials in supplemented goats tended to be greater than those in grazing goats. Furthermore, from 0 to 70 d, irrespective of the feeding system, rumen weight, rumen wall thickness, rumen papillae length and area, TVFA concentration, xylanase, carboxymethylcellulase activity potentials, and microbial copy numbers increased (P< 0·01) with age, while the greatest amylase and protease activity potentials occurred at 28 d. Most anatomic and functional variables evolved progressively from 14 to 42 d, while microbial colonisation was fastest from birth to 28 d. These outcomes suggest that the supplemental feeding system is more effective in promoting rumen development than the grazing system; in addition, for both the feeding systems, microbial colonisation in the rumen is achieved at 1 month, functional achievement at 2 months, and anatomic development after 2 months.


Assuntos
Ração Animal , Dieta/veterinária , Métodos de Alimentação/veterinária , Mucosa Gástrica/crescimento & desenvolvimento , Cabras/crescimento & desenvolvimento , Herbivoria , Rúmen/crescimento & desenvolvimento , Amilases/biossíntese , Animais , Animais Recém-Nascidos , Celulase/biossíntese , China , Feminino , Fermentação , Mucosa Gástrica/enzimologia , Mucosa Gástrica/microbiologia , Mucosa Gástrica/fisiologia , Conteúdo Gastrointestinal/química , Conteúdo Gastrointestinal/microbiologia , Cabras/microbiologia , Cabras/fisiologia , Masculino , Leite , Peptídeo Hidrolases/biossíntese , Rúmen/enzimologia , Rúmen/microbiologia , Rúmen/fisiologia , Desmame , Aumento de Peso , Xilosidases/biossíntese
11.
Arch Anim Nutr ; 69(6): 442-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26490200

RESUMO

This study was conducted to evaluate the effects of the dietary ratio of ruminal degraded protein (RDP) to ruminal undegraded protein (RUP) and the dry matter intake (DMI) on the intestinal flows of endogenous nitrogen (N) and amino acids (AA) in goats. The experiment was designed as a 4×4 Latin square using four ruminally, duodenally and ileally cannulated goats. The treatments were arranged in a 2×2 factorial design; two ratios of RDP to RUP (65:35 and 45:55, RDP1 and RDP2, respectively) and two levels at 95% and 75% of voluntary feed intake (DMI1 and DMI2, respectively) were fed to the goats. There were no significant differences in the N intake, duodenal flow of total N, undegraded feed N, microbial N, endogenous N or ileal flow of endogenous N, but the duodenal and ileal flow of endogenous N numerically decreased by approximately 22% and 9%, respectively, when the feed intake changed from DMI1 (0.63 kg/d) to DMI2 (0.50 kg/d). The dietary ratio of RDP to RUP had significant effects (p<0.05) on the ileal flows of endogenous leucine, phenylalanine and cysteine. The present results implied that the duodenal flows of endogenous N and AA decreased when the dietary RDP to RUP ratio and DMI decreased, and the flow of endogenous AA at the ileum also decreased when the DMI decreased but increased with decreasing RDP to RUP ratios.


Assuntos
Aminoácidos/metabolismo , Proteínas Alimentares/metabolismo , Cabras/fisiologia , Nitrogênio/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Digestão , Duodeno/fisiologia , Íleo/fisiologia
12.
Arch Anim Nutr ; 69(4): 251-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25963843

RESUMO

The objective of this study was to evaluate the effectiveness of supplementation of cellulase and xylanase to diets of growing goats to improve nutrient digestibility, utilisation of energy and mitigation of enteric methane emissions. The experiment was conducted in a 5 × 5 Latin square design using five goats with permanent rumen fistulae and five treatments consisted of two levels of cellulase crossed over with two levels of xylanase plus unsupplemented Control. The cellulase (243 U/g) derived from Neocallimastix patriciarum was added at 0.8 and 1.6 g/kg dry matter intake (DMI) and the xylanase (31,457 U/ml) derived from Aspergillus oryzae was fed at 1.4 and 2.2 ml/kg DMI. There were no differences in apparent digestibility of organic matter, neutral detergent fibre, acid detergent fibre and rumen fermentation parameters (i.e. ammonia-nitrogen [N], volatile fatty acids) among all treatments. Dietary cellulase and xylanase addition did not influence energy and N utilisation. But compared to xylanase addition at the higher dose, at the low xylanase dose the retained N, the availability of retained N and digested N were increased (p < 0.01). Moreover, enzyme addition did not affect the enteric methane emission and community diversity of ruminal methanogens. The present results indicated that previous in vitro findings were not confirmed in ruminant trials.


Assuntos
Ração Animal , Celulase/metabolismo , Cabras/fisiologia , Rúmen/metabolismo , Xilosidases/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Digestão , Feminino , Fermentação , Cabras/crescimento & desenvolvimento , Cabras/microbiologia , Metano/metabolismo
13.
Anaerobe ; 28: 168-77, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24972096

RESUMO

Understanding the intestinal bacteria in ruminants and their population kinetics is essential for their ecological function, as well as their interaction with the host. In this in vitro study, we aimed to determine whether gut region and fiber structure can influence bacterial diversity and functional bacterial population, together with the kinetics of functional bacterial species in the cecal inocula using PCR-DGGE and qPCR. A split plot design was conducted with gut regions (jejunum, ileum, cecum and colon) as main plot, and substrates (neutral detergent fiber (NDF) and cellulose (CEL)) as subplot. Incubation time and gut region affected dominant bacterial diversity. The numbers of total bacteria, cellulolytic bacteria, genus Prevotella and amylolytic bacteria in the hindgut inocula were greater (P < 0.05) than those in the small intestinal inocula. Fiber structure did not significantly influence the dominant bacterial diversity and the numbers of most examined functional bacterial species. The greatest increase rate of cellulolytic bacteria occurred earlier than amylolytic bacteria except for R. albus incubated with NDF. Changes in cellulolytic bacterial populations were not coordinative with alteration of fiber disappearance as well as CMCase and xylanase activities. All these suggest that the hindgut contents have greater potential to digest fiber than small intestinal contents, and cellulolytic bacteria are of significant value at the initial stage of fiber digestion among the fiber digestive microbes in the intestine.


Assuntos
Bactérias/classificação , Biota , Dieta/métodos , Fibras na Dieta/análise , Trato Gastrointestinal/microbiologia , Animais , Bactérias/genética , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante , Cabras , Reação em Cadeia da Polimerase
14.
J Sci Food Agric ; 94(9): 1745-52, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24254250

RESUMO

BACKGROUND: Post-ruminal digestion of fiber has received much less attention than its ruminal digestion. Using in vitro incubation techniques, the present study explored whether variations in fiber digestion occurred in different segments of the post-ruminal tract and whether fiber structure could influence its digestibility. A split plot design was conducted with gut segments (jejunum, ileum, cecum and colon) as main plot and substrates (neutral detergent fiber (NDF) and cellulose (CEL)) as subplot. RESULTS: With the same substrate, the final asymptotic gas volume (V(F)), gas production at t(i) (V(t(i)), digestibility, microbial crude protein (MCP), total bacteria number (TBN), total short-chain fatty acids (TSCFA) and xylanase in incocula from the cecum and colon exceeded (P < 0.01) those in incocula from the jejunum and ileum, while the NH3-N in the former was less (P < 0.01). For the same gut segment, the digestion of CEL was superior to NDF, as reflected in greater V(F), V(t(i)), maximum rate of gas production, digestibility, enzyme activities and SCFA but lower pH and NH3-N. CONCLUSION: The current results imply that the intestinal contents from the cecum and colon have greater potential to digest fiber than those from the jejunum and ileum, and CEL is more easily digested in the post-ruminal tract than NDF.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Bactérias/metabolismo , Celulose/metabolismo , Fibras na Dieta/metabolismo , Digestão , Cabras/metabolismo , Mucosa Intestinal/metabolismo , Amônia/metabolismo , Animais , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Ceco/metabolismo , Ceco/microbiologia , Colo/metabolismo , Colo/microbiologia , Detergentes , Ácidos Graxos Voláteis/metabolismo , Gases/metabolismo , Cabras/microbiologia , Concentração de Íons de Hidrogênio , Íleo/metabolismo , Íleo/microbiologia , Técnicas In Vitro , Intestinos/microbiologia , Jejuno/metabolismo , Jejuno/microbiologia , Rúmen , Xilosidases/metabolismo
15.
Front Plant Sci ; 14: 1305999, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078097

RESUMO

Corn crop grown and ensiled at high temperature have lower water soluble carbohydrates (WSC), epiphytic lactic acid bacteria (LAB) population, lactic acid concentration, fermentation quality and aerobic stability. This study systematically investigated the effects of heterofermentative LAB (hetLAB), homofermentative LAB (homLAB), molasses and their mixture (MIX) on in-silo fermentation characteristics, chemical profiles, Cornell Net Carbohydrate and Protein System (CNCPS) carbohydrate subfractions, in vitro digestibility (DMD), microbial count, and post-ensiling aerobic stability of whole crop corn silage during hot summer (30 to 45°C) condition. Corn hybrids (P30K08 and DK6789) were ensiled at targeted dry matter (DM) of 330 g/kg for 0, 3, 7, 21, and 150 days in 3 L silos, without additive (CCS) or treated with hetLAB (4×106 cfu/g Lactobacillus buchneri), homLAB (1×106 cfu/g of L. plantarum), molasses (3% of fresh forage) or MIX (half of individual doses of homLAB, hetLAB and molasses) additives. The CCS, homLAB, hetLAB, molasses, or MIX treated chopped material of each hybrid were ensiled in 16 replicate silos at a density of 260 kg of DM/m3. Compared to CCS, the additives significantly improved silage nutritional and fermentation quality, DM digestibility (in vitro), count of LAB, DM recovery and aerobic stability, and decreased counts of yeast and mold. Among the inoculants, the homLAB and MIX inoculated silages had greatest improvement in fermentation quality and nutritional value. The homLAB produced corn silage with the highest (P < 0.05) content of lactic acid, and soluble carbohydrates, and lowest contents of acetic acid, NH3-N and pH, demonstrating desirable and restricted in silo fermentation. On the other hand, the hetLAB inoculated silages had the greatest (P < 0.05) value of acetic acids, highlighting greater aerobic stability. Interestingly, the MIX silages followed the hetLAB in acetic acid value and homLAB in lactic acid value. Notably, without additive stable pH was not achieved during 21 days, with application of molasses, hetLAB and the MIX inoculants stable pH was achieved during 7 days, and with homLAB stable pH was achieved during the first 3 days of ensiling. The greatest numbers of viable LAB were recorded in homLAB (8.13 log cfu/g) and MIX (7.89 log cfu/g) inoculated silages, while the lowest for CCS (6.29 log cfu/g). The lowest yeast (1.48 log cfu/g) and mold (0.22 log cfu/g) were recorded for hetLAB inoculated silage. The greatest (P < 0.05) DM recovery was recorded for hetLAB (97.3%) and MIX (96.9%), and the lowest for the control silage (92.9%). All additives significantly improved the aerobic stability of corn silage, and the greatest value of >72 h was recorded for hetLAB and MIX inoculats, and the lowest for CSC (25 h). In conclusion, additives application can improve fermentation quality, nutritional value, DM recovery and aerobic stability of whole crop corn silage under hot summer conditions of the tropics. The MIX inoculant showed potential to improve in-silo fermentation, and aerobic stability at the same time, however, further investigation are required, particularly with respect of dose rate.

16.
Biology (Basel) ; 12(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37998035

RESUMO

Ewes undergo complex metabolic changes during pregnancy. Understanding the specific process of these changes is a necessary prerequisite in ewes for regulating and intervening in order to maintain pregnancies. However, there have been relatively few studies on the specific changes that occur in nutritional metabolism in pregnant ewes during early gestation, especially for some landrace ewes in highly cold areas. Therefore, this study aimed to (1) elucidate the changes in metabolites and microbial communities in pregnant ewes during early gestation using metabolomics and 16S ribosomal RNA gene (rDNA) amplicon sequencing approaches, and to (2) discover novel early pregnancy-induced biomarkers in the blood and faeces. Rams were placed together with ewes on D0 and removed on D45. During early gestation, blood and faecal samples were collected from ewes in a highly cold area for analysing the metabolites and microbial communities; these were retrospectively classified as the early gestation pregnant (EP) ewe group or the nonpregnant (NP) ewe group based on the lambing status recorded during the expected delivery period. The differences in the plasma biochemical parameters, plasma metabolites, and faecal microbial communities of pregnant and nonpregnant ewes were characterised. The GC, IL-6, O-acetyl-l-serine, L-glutamine, and 6-acetamido-2-oxohexanoic acid were screened out as potential biomarkers for evaluating the occurrence of early pregnancy. These novel early pregnancy-induced metabolites discovered in ewes might allow for the development of technologies to detect early pregnancies in sheep in highly cold areas.

17.
Front Microbiol ; 14: 1103222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950158

RESUMO

Introduction: Rumen motility is a key element that influences ruminant nutrition, whereas little is known about the effects of rumen contraction duration on rumen fermentation and ruminal microbiome. We previously reported that proper rotation speed of a rumen simulation technique (RUSITEC) system enhanced rumen fermentation and microbial protein (MCP) production. In the present study, different contraction durations and intervals were simulated by setting different stirring times and intervals of the stirrers in a RUSITEC system. The objective of this trial was to evaluate the influences of stirring time on rumen fermentation characteristics, nutrient degradation, and ruminal bacterial microbiota in vitro. Methods: This experiment was performed in a 3 × 3 Latin square design, with each experimental period comprising 4 d for adjustment and 3 d for sample collection. Three stirring time treatments were set: the constant stir (CS), the intermittent stir 1 (each stir for 5 min with an interval of 2 min, IS1), and the intermittent stir 2 (each stir for 4 min with an interval of 3 min, IS2). Results: The total volatile fatty acid (TVFA) concentration, valerate molar proportion, ammonia nitrogen level, MCP density, protozoa count, disappearance rates of dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber, emissions of total gas and methane, and the richness index Chao 1 for the bacterial community were higher (p < 0.05) in the IS1 when compared to those in the CS. The greatest TVFA, MCP, protozoa count, nutrient disappearance rates, gas productions, and bacterial richness indices of Ace and Chao 1 amongst all treatments were observed in the IS2. The relative abundance of the genus Treponema was enriched (p < 0.05) in CS, while the enrichment (p < 0.05) of Agathobacter ruminis and another two less known bacterial genera were identified in IS2. Discussion: It could be concluded that the proper reduction in the stirring time might help to enhance the feed fermentation, MCP synthesis, gas production, and the relative abundances of specific bacterial taxa.

18.
Food Sci Nutr ; 11(6): 3575-3587, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37324908

RESUMO

This experiment explored the effects of different proportions of sweet sorghum silage as a substitute for corn silage on dry matter intake (DMI), milk yield, milk quality, apparent digestibility, rumen fermentation parameters, serum amino acid profile, and rumen microbial composition of dairy cows. A total of 32 mid-lactation Holstein dairy cows with similar body weights and parities were randomly divided into four treatments: 100% corn silage +0% sorghum silage (CON), 75% corn silage +25% sorghum silage (CS1), 50% corn silage +50% sorghum silage (CS2), and 25% corn silage +75% sorghum silage (CS3). The milk yield was increased (linear, p = .048) as the proportion of sweet sorghum increased. Linear (p = .003) and quadratic (p = .046) increased effects were observed in milk fat as corn silage was replaced with sorghum silage. Compared with the CON diet group, the CS2 and CS3 diet groups had lower dry matter (DM) (linear, p < .001), ether extract (EE) (linear, p < .001), and gross energy (GE) (linear, p = .001) digestibility of the dairy cows. The ruminal fluid aspartate (Asp) level decreased (linear, p = .003) as the proportion of sweet sorghum increased. Linear (p < .05) and quadratic (p < .05) increased effects were observed for the contents of threonine (Thr), glycine (Gly), valine (Val), leucine (Leu), tyrosine (Tyr), and histidine (His) in rumen fluid with the replacement of corn silage with sorghum silage. Cows fed the CS3 diet had greater Faecalibacterium, Bacteroides, and Prevotella ruminicola content/copy number than those fed the CON diet (p < .05). In conclusion, feeding sorghum silage as a replacement for corn silage could increase the milk yield and fat, promote the growth of rumen microbes, and provide more rumen fluid amino acids for the body and microbial utilization. We believe that sorghum silage is feasible for dairy cows, and it is reasonable to replace corn silage with 75% sorghum silage.

19.
Front Vet Sci ; 9: 812373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647087

RESUMO

This experiment was performed to reveal the metabolic responses of dairy cows to the replacement of soybean meal (SBM) with fermented soybean meal (FSBM). Twenty-four lactating Chinese Holstein dairy cattle were assigned to either the SBM group [the basal total mixed ration (TMR) diet containing 5.77% SBM] or the FSBM group (the experimental TMR diet containing 5.55% FSBM), in a completely randomized design. The entire period of this trial consisted of 14 days for the adjustment and 40 days for data and sample collection, and sampling for rumen liquid, blood, milk, and urine was conducted on the 34th and 54th day, respectively. When SBM was completely replaced by FSBM, the levels of several medium-chain FA in milk (i.e., C13:0, C14:1, and C16:0) rose significantly (p < 0.05), while the concentrations of a few milk long-chain FA (i.e., C17:0, C18:0, C18:1n9c, and C20:0) declined significantly (p < 0.05). Besides, the densities of urea nitrogen and lactic acid were significantly (p < 0.05) higher, while the glucose concentration was significantly (p < 0.05) lower in the blood of the FSBM-fed cows than in the SBM-fed cows. Based on the metabolomics analysis simultaneously targeting the rumen liquid, plasma, milk, and urine, it was noticed that substituting FSBM for SBM altered the metabolic profiles of all the four biofluids. According to the identified significantly different metabolites, 3 and 2 amino acid-relevant metabolic pathways were identified as the significantly different pathways between the two treatments in the rumen fluid and urine, respectively. Furthermore, glycine, serine, and threonine metabolism, valine, leucine, and isoleucine biosynthesis, and cysteine and methionine metabolism were the three key integrated different pathways identified in this study. Results mainly implied that the FSBM replacement could enhance nitrogen utilization and possibly influence the inflammatory reactions and antioxidative functions of dairy cattle. The differential metabolites and relevant pathways discovered in this experiment could serve as biomarkers for the alterations in protein feed and nitrogen utilization efficiency of dairy cows, and further investigations are needed to elucidate the definite roles and correlations of the differential metabolites and pathways.

20.
Animals (Basel) ; 12(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35739870

RESUMO

The colon is a crucial digestive organ of the hind gut in ruminants. The bacterial diversity and mucosal immune maturation in this region are related to age. However, whether the microRNA expression in the colon of goats is affected by age is still unclear. In the current study, we analyzed the transcriptomes of colon microRNAs during preweaning (Day 10 and Day 25) and postweaning (Day 31). A total of 1572 microRNAs were identified in the colon tissues. Of these, 39 differentially expressed microRNAs (DEmiRNAs) and 88 highly expressed microRNAs (HEmiRNAs) were screened. The target genes regulated by the DEmiRNAs and HEmiRNAs were commonly enriched in the MAPK signaling pathway, Wnt signaling pathway, Hippo signaling pathway, cell adhesion molecules, focal adhesion, and adherens junction. Remarkably, the targeted genes of the DEmiRNAs were highly enriched for the prevention of microbial invasion via the Erbb-MAPK network while the targeted genes of HEmiRNAs contributed to the permeable barrier maintenance and cell damage surveillance. Additionally, there were eight different expression profiles of 87 dynamic miRNAs, in which approximately half of them were affected by age. Taken together, our study reveals the different roles of DEmiRNAs, HEmiRNAs, and dynamic microRNAs in the development of the colon and gives new insights into the regulatory mechanism of colon development in goats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA