Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 36(7): 2531-2549, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38526222

RESUMO

Histospecification and morphogenesis of anthers during development in Arabidopsis (Arabidopsis thaliana) are well understood. However, the regulatory mechanism of microsporocyte generation at the pre-meiotic stage remains unclear, especially how archesporial cells are specified and differentiate into 2 cell lineages with distinct developmental fates. SPOROCYTELESS (SPL) is a key reproductive gene that is activated during early anther development and remains active. In this study, we demonstrated that the EAR motif-containing adaptor protein (ECAP) interacts with the Gro/Tup1 family corepressor LEUNIG (LUG) and the BES1/BZR1 HOMOLOG3 (BEH3) transcription factor to form a transcription activator complex, epigenetically regulating SPL transcription. SPL participates in microsporocyte generation by modulating the specification of archesporial cells and the archesporial cell-derived differentiation of somatic and reproductive cell layers. This study illustrates the regulation of SPL expression by the ECAP-LUG-BEH3 complex, which is essential for the generation of microsporocytes. Moreover, our findings identified ECAP as a key transcription regulator that can combine with different partners to regulate gene expression in distinct ways, thereby facilitating diverse processes in various aspects of plant development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Pólen/genética , Pólen/metabolismo , Pólen/crescimento & desenvolvimento , Proteínas Correpressoras/metabolismo , Proteínas Correpressoras/genética , Proteínas Nucleares
2.
Plant Physiol ; 195(2): 1382-1400, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38345866

RESUMO

Brassinosteroids (BRs) are phytohormones that regulate stomatal development. In this study, we report that BR represses stomatal development in etiolated Arabidopsis (Arabidopsis thaliana) cotyledons via transcription factors BRASSINAZOLE RESISTANT 1 (BZR1) and bri1-EMS SUPPRESSOR1 (BES1), which directly target MITOGEN-ACTIVATED PROTEIN KINASE KINASE 9 (MKK9) and FAMA, 2 important genes for stomatal development. BZR1/BES1 bind MKK9 and FAMA promoters in vitro and in vivo, and mutation of the BZR1/BES1 binding motif in MKK9/FAMA promoters abolishes their transcription regulation by BZR1/BES1 in plants. Expression of a constitutively active MKK9 (MKK9DD) suppressed overproduction of stomata induced by BR deficiency, while expression of a constitutively inactive MKK9 (MKK9KR) induced high-density stomata in bzr1-1D. In addition, bzr-h, a sextuple mutant of the BZR1 family of proteins, produced overabundant stomata, and the dominant bzr1-1D and bes1-D mutants effectively suppressed the stomata-overproducing phenotype of brassinosteroid insensitive 1-116 (bri1-116) and brassinosteroid insensitive 2-1 (bin2-1). In conclusion, our results revealed important roles of BZR1/BES1 in stomatal development, and their transcriptional regulation of MKK9 and FAMA expression may contribute to BR-regulated stomatal development in etiolated Arabidopsis cotyledons.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassinosteroides , Cotilédone , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares , Estômatos de Plantas , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brassinosteroides/metabolismo , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/genética , Estômatos de Plantas/efeitos dos fármacos , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Cotilédone/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Mutação/genética , Regiões Promotoras Genéticas/genética , Estiolamento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ligação Proteica/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética
3.
Plant Cell ; 34(10): 3773-3789, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35848951

RESUMO

Seed size is determined by the coordinated growth of the embryo, endosperm, and integument. Growth of the integument is initiated by signal molecules released from the developing endosperm or embryo. Although recent studies have identified many components that regulate seed size by controlling integument growth, the upstream signals and the signal transduction pathway that activate these components after double fertilization are unclear. Here, we report that the receptor-like kinase ERECTA (ER) controls seed size by regulating outer integument cell proliferation in Arabidopsis thaliana. Seeds from er mutants were smaller, while those from ER-overexpressing plants were larger, than those of control plants. Different from its role in regulating the development of other organs, ER regulates seed size via a novel mechanism that is independent of its intracellular domain. Our genetic and biochemical data show that a MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) signaling pathway comprising MAPK-KINASE 4/5, MAPK 3/6 (MPK3/6), DA1, and UBIQUITIN SPECIFIC PROTEASE 15 (UBP15) functions downstream of ER and modulates seed size. MPK3/6 phosphorylation inactivates and destabilizes DA1 to increase the abundance of UBP15, promoting outer integument cell proliferation and increasing seed size. Our study illustrates a nearly completed ER-mediated signaling pathway that regulates seed size and will help uncover the mechanism that coordinates embryo, endosperm, and integument growth after double fertilization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Sementes/metabolismo , Transdução de Sinais/genética , Proteases Específicas de Ubiquitina/genética
4.
Proc Natl Acad Sci U S A ; 119(45): e2206846119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322735

RESUMO

Heat stress limits plant growth, development, and crop yield, but how plant cells precisely sense and transduce heat stress signals remains elusive. Here, we identified a conserved heat stress response mechanism to elucidate how heat stress signal is transmitted from the cytoplasm into the nucleus for epigenetic modifiers. We demonstrate that HISTONE DEACETYLASE 9 (HDA9) transduces heat signals from the cytoplasm to the nucleus to play a positive regulatory role in heat responses in Arabidopsis. Heat specifically induces HDA9 accumulation in the nucleus. Under heat stress, the phosphatase PP2AB'ß directly interacts with and dephosphorylates HDA9 to protect HDA9 from 26S proteasome-mediated degradation, leading to the translocation of nonphosphorylated HDA9 to the nucleus. This heat-induced enrichment of HDA9 in the nucleus depends on the nucleoporin HOS1. In the nucleus, HDA9 binds and deacetylates the target genes related to signaling transduction and plant development to repress gene expression in a transcription factor YIN YANG 1-dependent and -independent manner, resulting in rebalance of plant development and heat response. Therefore, we uncover an HDA9-mediated positive regulatory module in the heat shock signal transduction pathway. More important, this cytoplasm-to-nucleus translocation of HDA9 in response to heat stress is conserved in wheat and rice, which confers the mechanism significant implication potential for crop breeding to cope with global climate warming.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Células Vegetais/metabolismo , Melhoramento Vegetal , Arabidopsis/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo
5.
New Phytol ; 241(4): 1492-1509, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38095247

RESUMO

During abscisic acid (ABA) signaling, reversible phosphorylation controls the activity and accumulation of class III SNF1-RELATED PROTEIN KINASE 2s (SnRK2s). While protein phosphatases that negatively regulate SnRK2s have been identified, those that positively regulate ABA signaling through SnRK2s are less understood. In this study, Arabidopsis thaliana mutants of Clade E Growth-Regulating 1 and 2 (EGR1/2), which belong to the protein phosphatase 2C family, exhibited reduced ABA sensitivity in terms of seed germination, cotyledon greening, and ABI5 accumulation. Conversely, overexpression increased these ABA-induced responses. Transcriptomic data revealed that most ABA-regulated genes in egr1 egr2 plants were expressed at reduced levels compared with those in Col-0 after ABA treatment. Abscisic acid up-regulated EGR1/2, which interact directly with SnRK2.2 through its C-terminal domain I. Genetic analysis demonstrated that EGR1/2 function through SnRK2.2 during ABA response. Furthermore, SnRK2.2 de-phosphorylation by EGR1/2 was identified at serine 31 within the ATP-binding pocket. A phospho-mimic mutation confirmed that phosphorylation at serine 31 inhibited SnRK2.2 activity and reduced ABA responsiveness in plants. Our findings highlight the positive role of EGR1/2 in regulating ABA signaling, they reveal a new mechanism for modulating SnRK2.2 activity, and provide novel insight into how plants fine-tune their responses to ABA.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosforilação , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Serina/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases/metabolismo
6.
Plant Cell ; 33(8): 2753-2775, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34003966

RESUMO

In rice (Oryza sativa) and other plants, plant architecture and seed size are closely related to yield. Brassinosteroid (BR) signaling and the mitogen-activated protein kinase (MAPK) pathway (MAPK kinase kinase 10 [MAPKKK10]-MAPK kinase 4 [MAPKK4]-MAPK6) are two major regulatory pathways that control rice architecture and seed size. However, their possible relationship and crosstalk remain elusive. Here, we show that WRKY53 mediated the crosstalk between BR signaling and the MAPK pathway. Biochemical and genetic assays demonstrated that glycogen synthase kinase-2 (GSK2) phosphorylates WRKY53 and lowers its stability, indicating that WRKY53 is a substrate of GSK2 in BR signaling. WRKY53 interacted with BRASSINAZOLE-RESISTANT 1(BZR1); they function synergistically to regulate BR-related developmental processes. We also provide genetic evidence showing that WRKY53 functions in a common pathway with the MAPKKK10-MAPKK4-MAPK6 cascade in leaf angle and seed size control, suggesting that WRKY53 is a direct substrate of this pathway. Moreover, GSK2 phosphorylated MAPKK4 to suppress MAPK6 activity, suggesting that GSK2-mediated BR signaling might also regulated MAPK pathway. Together, our results revealed a critical role for WRKY53 and uncovered sophisticated levels of interplay between BR signaling and the MAPK pathway in regulating rice architecture and seed size.


Assuntos
Brassinosteroides/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Sementes/fisiologia , Regulação da Expressão Gênica de Plantas , Quinases da Glicogênio Sintase/genética , Quinases da Glicogênio Sintase/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Oryza/genética , Fosforilação , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Estabilidade Proteica , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385302

RESUMO

Regulation of the nucleocytoplasmic trafficking of signaling components, especially transcription factors, is a key step of signal transduction in response to extracellular stimuli. In the brassinosteroid (BR) signal transduction pathway, transcription factors from the BRASSINAZOLE RESISTANT1 (BZR1) family are essential in mediating BR-regulated gene expression. The subcellular localization and transcriptional activity of BZR1 are tightly regulated by reversible protein phosphorylation; however, the underlying mechanism is not well understood. Here, we provide evidence that both BZR1 phosphorylation and dephosphorylation occur in the nucleus and that BR-regulated nuclear localization of BZR1 is independent from its interaction with, or dephosphorylation by, protein phosphatase 2A. Using a photoconvertible fluorescent protein, Kaede, as a living tag to distinguish newly synthesized BZR1 from existing BZR1, we demonstrated that BR treatment recruits cytosolic BZR1 to the nucleus, which could explain the fast responses of plants to BR. Additionally, we obtained evidence for two types of protein turnover mechanisms that regulate BZR1 abundance in plant cells: a BR- and 26S proteosome-independent constitutive degradation mechanism and a BR-activated 26S proteosome-dependent proteolytic mechanism. Finally, treating plant cells with inhibitors of 26S proteosome induces the nuclear localization and dephosphorylation of BZR1, even in the absence of BR signaling. Based on these results, we propose a model to explain how BR signaling regulates the nucleocytoplasmic trafficking and reversible phosphorylation of BZR1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Transporte Ativo do Núcleo Celular , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Mutação , Plantas Geneticamente Modificadas , Plântula
8.
Parasitol Res ; 123(2): 132, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353756

RESUMO

To determine the genotypes of the epidemic strains of Echinococcus granulosus in livestock in Tibet, samples of E. granulosus cysts were collected from 11 yaks and 62 sheep. Genomic DNA was extracted from these samples, and gene fragments of mitochondrial cytochrome c oxidase subunit I (cox1) and NADH dehydrogenase subunit I (nad1) were amplified by PCR and sequenced. DNASTAR and MAGA7.0 were employed for homology analysis and phylogenetic tree construction. Echinococcus granulosus cysts were detected in 56.2% (41/73) of the samples screened. Of these, 63.4% (26/41) were identified as E. granulosus G1 genotype (common sheep strain), 24.4% (10 /41) as G3 genotype (buffalo strain), and 12.2% (5/41) were G6 genotype (camel strain). The study concludes that yaks and sheep in Langkazi county, Tibet, carry three E. granulosus genotypes (G1, G3, and G6), with the G1 genotype the predominant genotype in the region. This study clarifies the distribution of E. granulosus genotypes, providing genetic data and insight for the surveillance and prevention of echinococcosis.


Assuntos
Bison , Cistos , Echinococcus granulosus , Bovinos , Animais , Ovinos , Tibet/epidemiologia , Echinococcus granulosus/genética , Filogenia , China , Genótipo , Búfalos , Camelus , Complexo I de Transporte de Elétrons
9.
Parasitol Res ; 123(6): 236, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856927

RESUMO

Echinococcosis is a worldwide disease endemic to the western region of China. In 2023, echinococcosis was detected in one of 27 wild boars (Sus scrofa) in Yili Prefecture, Xinjiang, northwestern China. Histopathological staining and full sequence mitochondrial (mt) analysis were used to determine the infection genotype. Echinococcus granulosus was detected in the wild boar liver, and the cystic lesion characteristics indicated the E. granulosus genotype (G1). This case is the first confirmation of wild boar serving as a transmitter for the G1 genotype of E. granulosus within China. These findings suggest that surveillance is needed to assess the risk of E. granulosus sensu lato transmission to humans and wild animals.


Assuntos
Equinococose , Echinococcus granulosus , Genótipo , Sus scrofa , Doenças dos Suínos , Animais , China , Echinococcus granulosus/genética , Echinococcus granulosus/isolamento & purificação , Echinococcus granulosus/classificação , Sus scrofa/parasitologia , Doenças dos Suínos/parasitologia , Suínos , Equinococose/veterinária , Equinococose/parasitologia , Equinococose/epidemiologia , Fígado/parasitologia , Fígado/patologia , Análise de Sequência de DNA , DNA Mitocondrial/genética , DNA de Helmintos/genética , Filogenia
10.
J Integr Plant Biol ; 66(1): 20-35, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37905451

RESUMO

Thermomorphogenesis and the heat shock (HS) response are distinct thermal responses in plants that are regulated by PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) and HEAT SHOCK FACTOR A1s (HSFA1s), respectively. Little is known about whether these responses are interconnected and whether they are activated by similar mechanisms. An analysis of transcriptome dynamics in response to warm temperature (28°C) treatment revealed that 30 min of exposure activated the expression of a subset of HSFA1 target genes in Arabidopsis thaliana. Meanwhile, a loss-of-function HSFA1 quadruple mutant (hsfa1-cq) was insensitive to warm temperature-induced hypocotyl growth. In hsfa1-cq plants grown at 28°C, the protein and transcript levels of PIF4 were greatly reduced, and the circadian rhythm of many thermomorphogenesis-related genes (including PIF4) was disturbed. Additionally, the nuclear localization of HSFA1s and the binding of HSFA1d to the PIF4 promoter increased following warm temperature exposure, whereas PIF4 overexpression in hsfa1-cq partially rescued the altered warm temperature-induced hypocotyl growth of the mutant. Taken together, these results suggest that HSFA1s are required for PIF4 accumulation at a warm temperature, and they establish a central role for HSFA1s in regulating both thermomorphogenesis and HS responses in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo/genética , Vernalização , Resposta ao Choque Térmico/genética , Temperatura , Hipocótilo/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Plant Physiol ; 190(2): 1182-1198, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35809074

RESUMO

Cell wall lignification is a key step in forming functional endodermis and protoxylem (PX) in plant roots. Lignified casparian strips (CS) in endodermis and tracheary elements of PX are essential for selective absorption and transport of water and nutrients. Although multiple key regulators of CS and PX have been identified, the spatial information that drives the developmental shift to root lignification remains unknown. Here, we found that brassinosteroid (BR) signaling plays a key role in inhibiting root lignification in the root elongation zone. The inhibitory activity of BR signaling occurs partially through the direct binding of BRASSINAZOLE-RESISTANT 1 (BZR1) to SHORT-ROOT (SHR), repressing the SHR-mediated activation of downstream genes that are involved in root lignification. Upon entering the mature root zone, BR signaling declines rapidly, which releases SHR activity and initiates root lignification. Our results provide a mechanistic view of the developmental transition to cell wall lignification in Arabidopsis thaliana roots.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Água/metabolismo
12.
Microb Pathog ; 175: 105954, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36574865

RESUMO

BACKGROUND: Babesiosis is an emerging zoonosis worldwide that is caused by tick-borne apicomplexans, Babesia spp., which threatens the health of domesticated and wild mammals and even humans. Although it has done serious harm to animal husbandry and public health, the study of Babesia is still progressing slowly. Until now, no effective anti-Babesia vaccines have been available, and administration of combined drugs tends to produce side effects. Therefore, non-targeted metabolomics was employed in the present study to examine the temporal dynamic changes in the metabolic profile of the infected erythrocytes. The goal was to obtain new insight into pathogenesis of Babesia and to explore vaccine candidates or novel drug targets. METHODS: C57BL/6 mice were infected with B. microti and erythrocytes at different time points (0, 3, 6 , 9, 12, and 22-days post-infection) were subjected to parasitemia surveillance and then metabolomics analysis using liquid chromatography-mass spectrometry (LC-MS). Multivariate statistical analyses were performed to clearly separate and identify dysregulated metabolites in Babesia-infected mice. The analyses included principal components analysis (PCA) and orthogonal partial least squares-discrimination analysis (OPLS-DA). The time-series trends of the impacted molecules were analyzed using the R package Mfuzz and the fuzzy clustering principle. The temporal profiling of amino acids, lipids, and nucleotides in blood cells infected with B. microti were also investigated. RESULTS: B. microti infection resulted in a fast increase of parasitemia and serious alteration of the mouse metabolites. Through LC-MS metabolomics analysis, 10,289 substance peaks were detected and annotated to 3,705 components during the analysis period. There were 1,166 dysregulated metabolites, which were classified into 8 clusters according to the temporal trends. Consistent with the trend of parasitemia, the numbers of differential metabolites reached a peak of 525 at 6-days post-infection (dpi). Moreover, the central carbon metabolism in cancer demonstrated the most serious change during the infection process except for that observed at 6 dpi. Sabotage occurred in components involved in the TCA cycle, amino acids, lipids, and nucleotide metabolism. CONCLUSION: Our findings revealed a great alteration in the metabolites of Babesia-infected mice and shed new light on the pathogenesis of B. microti at the metabolic level. The results might lead to novel information about the mechanisms of pathopoiesis, babesisosis, and anti-parasite drug/vaccine development in the future.


Assuntos
Babesia microti , Humanos , Animais , Camundongos , Parasitemia , Camundongos Endogâmicos C57BL , Eritrócitos/parasitologia , Lipídeos , Mamíferos
13.
Proc Natl Acad Sci U S A ; 117(35): 21766-21774, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817516

RESUMO

Leaf architecture directly determines canopy structure, and thus, grain yield in crops. Leaf droopiness is an agronomic trait primarily affecting the cereal leaf architecture but the genetic basis and underlying molecular mechanism of this trait remain unclear. Here, we report that DROOPY LEAF1 (DPY1), an LRR receptor-like kinase, plays a crucial role in determining leaf droopiness by controlling the brassinosteroid (BR) signaling output in Setaria, an emerging model for Panicoideae grasses. Loss-of-function mutation in DPY1 led to malformation of vascular sclerenchyma and low lignin content in leaves, and thus, an extremely droopy leaf phenotype, consistent with its preferential expression in leaf vascular tissues. DPY1 interacts with and competes for SiBAK1 and as a result, causes a sequential reduction in SiBRI1-SiBAK1 interaction, SiBRI1 phosphorylation, and downstream BR signaling. Conversely, DPY1 accumulation and affinity of the DPY1-SiBAK1 interaction are enhanced under BR treatment, thus preventing SiBRI1 from overactivation. As such, those findings reveal a negative feedback mechanism that represses leaf droopiness by preventing an overresponse of early BR signaling to excess BRs. Notably, plants overexpressing DPY1 have more upright leaves, thicker stems, and bigger panicles, suggesting potential utilization for yield improvement. The maize ortholog of DPY1 rescues the droopy leaves in dpy1, suggesting its conserved function in Panicoideae. Together, our study provides insights into how BR signaling is scrutinized by DPY1 to ensure the upward leaf architecture.


Assuntos
Brassinosteroides/metabolismo , Folhas de Planta/metabolismo , Setaria (Planta)/genética , Regulação da Expressão Gênica de Plantas/genética , Mutação , Fenótipo , Fosforilação , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Poaceae/genética , Poaceae/metabolismo , Setaria (Planta)/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
14.
New Phytol ; 233(2): 795-808, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34693527

RESUMO

The timing and extent of cell division are crucial for the correct patterning of multicellular organism. In Arabidopsis, root ground tissue maturation involves the periclinal cell division of the endodermis to generate two cell layers: endodermis and middle cortex. However, the molecular mechanism underlying this pattern formation remains unclear. Here, we report that phytohormone brassinosteroid (BR) and redox signal hydrogen peroxide (H2 O2 ) interdependently promote periclinal division during root ground tissue maturation by regulating the activity of SHORT-ROOT (SHR), a master regulator of root growth and development. BR-activated transcription factor BRASSINAZOLE RESISTANT1 (BZR1) directly binds to the promoter of SHR to induce its expression, and physically interacts with SHR to increase the transcripts of RESPIRATORY BURST OXIDASE HOMOLOGs (RBOHs) and elevate the levels of H2 O2 , which feedback enhances the interaction between BZR1 and SHR. Additionally, genetic analysis shows that SHR is required for BZR1-promoted periclinal division, and BZR1 enhances the promoting effects of SHR on periclinal division. Together, our finding reveals that the transcriptional module of BZR1-SHR fine-tunes periclinal division during root ground tissue maturation in response to hormone and redox signals.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Divisão Celular , Regulação da Expressão Gênica de Plantas , Triazóis
15.
Plant Cell ; 31(10): 2353-2369, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31358650

RESUMO

Although much is known about plant responses to heat shock (HS), how plants sense high temperature and the primary HS signal transduction pathway leading to HS-regulated gene expression are still poorly understood. To identify primary transcription factors that mediate HS-regulated gene expression and their target genes, RNA sequencing was performed to detect genes whose expression is rapidly altered by HS in Arabidopsis (Arabidopsis thaliana). The results showed several genes were induced after only 5 min of HS treatment, suggesting that HS signaling occurs very rapidly. Analysis of the cis-elements in the promoters of genes upregulated by 10 min of HS treatment identified HEAT SHOCK FACTOR A1s (HSFA1s) and circadian clock proteins REVEILLE4 (RVE4) and RVE8 as essential transcription factors that independently mediate early HS-induced gene expression. Using hsfa1a/b/d/e and rve4/8 mutants, we identified subsets of HSFA1s- or RVE4/8-dependent early HS-induced genes and showed RVE4/8 regulate plant thermotolerance partially by regulating the expression of downstream transcription factors ETHYLENE RESPONSIVE FACTOR53 (ERF53) and ERF54, specifically around noon. These findings reveal a potential transcriptional regulatory hierarchy governing the first wave of HS-induced gene expression. They also provided important insight into the mechanism by which the circadian clock gates thermotolerance and prepares plants for exposure to high temperatures during the day.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Relógios Circadianos/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Relógios Circadianos/fisiologia , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Ontologia Genética , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Temperatura Alta , Regiões Promotoras Genéticas , Ligação Proteica/genética , RNA-Seq , Transdução de Sinais/genética , Estresse Fisiológico/genética , Termotolerância/genética , Termotolerância/fisiologia , Fatores de Transcrição/genética , Ativação Transcricional/genética , Ativação Transcricional/fisiologia
16.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(12): 1402-1405, 2022 Dec 10.
Artigo em Zh | MEDLINE | ID: mdl-36453968

RESUMO

OBJECTIVE: To explore the genetic etiology of a child featuring recurrent oral ulcer. METHODS: Clinical data of the child was collected. Whole exome sequencing was carried out for her. Candidate variant was verified by low-coverage massive parallel copy number variation sequencing (CNV-seq) of the family trio. RESULTS: The child, a 6-year-old girl, has featured recurrent fever and ulcers of the oral mucosa, vulvar and perianal regions. No pathogenic variant was found by whole exome sequencing. However, analysis of chromosome copy number variation using the whole exome sequencing data has revealed mosaicism of trisomy 8. CNV-seq assay has verified the variant in the child, with the percentage of mosaicism being 73%. No abnormality was found in neither of her parents. CONCLUSION: A case of mosaicism trisomy 8 with recurrent oral ulcer as the first symptom was diagnosed, which has enriched the phenotypic data of trisomy 8 syndrome.


Assuntos
Úlceras Orais , Trissomia , Humanos , Criança , Feminino , Trissomia/genética , Cromossomos Humanos Par 8/genética , Variações do Número de Cópias de DNA , Mosaicismo
17.
BMC Plant Biol ; 21(1): 291, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34167462

RESUMO

Brassinosteroids (BRs) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, those in foxtail millet remain largely unknown. Here, we show that the BR signaling function of BRASSINOSTEROID INSENSITIVE 1 (BRI1) is conserved between Arabidopsis and foxtail millet, a new model species for C4 and Panicoideae grasses. We identified four putative BR receptor genes in the foxtail millet genome: SiBRI1, SiBRI1-LIKE RECEPTOR KINASE 1 (SiBRL1), SiBRL2 and SiBRL3. Phylogenetic analysis was used to classify the BR receptors in dicots and monocots into three branches. Analysis of their expression patterns by quantitative real-time PCR (qRT-PCR) showed that these receptors were ubiquitously expressed in leaves, stems, dark-grown seedlings, roots and non-flowering spikelets. GFP fusion experiments verified that SiBRI1 localized to the cell membrane. We also explored the SiBRI1 function in Arabidopsis through complementation experiments. Ectopic overexpression of SiBRI1 in an Arabidopsis BR receptor loss-of-function mutant, bri1-116, mostly reversed the developmental defects of the mutant. When SiBRI1 was overexpressed in foxtail millet, the plants showed a drooping leaf phenotype and root development inhibition, lateral root initiation inhibition, and the expression of BR synthesis genes was inhibited. We further identified BRI1-interacting proteins by immunoprecipitation (IP)-mass spectrometry (MS). Our results not only demonstrate that SiBRI1 plays a conserved role in BR signaling in foxtail millet but also provide insight into the molecular mechanism of SiBRI1.


Assuntos
Brassinosteroides/metabolismo , Genes de Plantas/genética , Proteínas de Plantas/genética , Receptores de Superfície Celular/genética , Setaria (Planta)/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Evolução Molecular , Filogenia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Proteínas Quinases/genética , Proteínas Quinases/fisiologia , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/fisiologia , Setaria (Planta)/metabolismo
18.
Med Sci Monit ; 27: e934235, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34355703

RESUMO

Retraction requested by author due to an admission of research fraud. Reference: Hong Liu, Si Chen, Cunju Guo, Wenqiang Tang, Wei Liu, Yiming Liu. Astragalus Polysaccharide Protects Neurons and Stabilizes Mitochondrial in a Mouse Model of Parkinson Disease. Med Sci Monit. 2018; 24: ANS5192-5199. 10.12659/MSM.908021.

19.
Proc Natl Acad Sci U S A ; 115(5): 1123-1128, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339500

RESUMO

ROOT MERISTEM GROWTH FACTOR (RGF) 1 is an important peptide hormone that regulates root growth. Upon binding to its receptor, RGFR1, RGF1 regulates the expression of two transcription factors, PLETHORA 1 and 2 (PLT1/2), to influence root meristem development. Here, we show that the ubiquitin-specific proteases UBP12 and UBP13 are positive regulators of root meristem development and that UBP13 interacts directly with RGF1 receptor (RGFR1) and its close homolog RGFR2. The ubp12,13 double-mutant root is completely insensitive to exogenous applied RGF1. Consistent with this result, RGF1-induced ubiquitination and turnover of RGFR1 protein were accelerated in ubp12,13-mutant plants but were delayed in transgenic plants overexpressing UBP13 Genetic analysis showed that PLT2 or RGFR1 overexpression partially rescued the short-root phenotype and the reduced cortical root meristem cell number in ubp12,13 plants. Together, our results demonstrate that UBP12/13 are regulators of the RGF1-RGFR1-PLT1/2 signaling pathway and that UBP12/13 can counteract RGF1-induced RGFR1 ubiquitination, stabilize RGFR1, and maintain root cell sensitivity to RGF1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Endopeptidases/metabolismo , Meristema/fisiologia , Peptídeos/metabolismo , Raízes de Plantas/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Arabidopsis/fisiologia , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Ligantes , Hormônios Peptídicos/metabolismo , Fenótipo , Fosforilação , Plantas Geneticamente Modificadas/fisiologia , Mapeamento de Interação de Proteínas , Transdução de Sinais , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação
20.
J Stroke Cerebrovasc Dis ; 29(5): 104644, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32081495

RESUMO

BACKGROUND: We sought to explore the effects of sodium valproate combined with lamotrigine on quality of life and serum inflammatory factors in patients with poststroke secondary epilepsy. METHODS: A total of 145 patients with post-stroke secondary epilepsy admitted to our hospital from January 2017 to June 2018 were collected: 76 treated with sodium valproate combined with lamotrigine (study group) and 69 patients treated with sodium valproate alone (control group). The levels of serum high-mobility group protein B1, matrix metalloproteinase 9, and interleukin 6 were detected before and after treatment, and the therapeutic efficacy and adverse reactions were compared between the 2 groups. RESULTS: The total effective rate of the study group was higher than that of the control group. Both groups decreased in epileptiform discharges or in the number of involved leads after treatment, with the results of the study group being lower than those of the control group. The quality of life scores in both groups was increased after treatment, albeit the scores of the study group were higher than those of the control group. In terms of the levels of serum inflammatory factors, the 2 groups were reduced after treatment; the levels of the study group were lower than those of the control group. Regarding the incidence of adverse reactions, no significant difference was seen between the 2 groups. CONCLUSIONS: Sodium valproate combined with lamotrigine has better clinical efficacy and higher safety in the treatment of poststroke secondary epilepsy and is able to reduce the expression levels of serum inflammatory factors.


Assuntos
Anticonvulsivantes/uso terapêutico , Encéfalo/efeitos dos fármacos , Epilepsia/tratamento farmacológico , Mediadores da Inflamação/sangue , Lamotrigina/uso terapêutico , Qualidade de Vida , Acidente Vascular Cerebral/complicações , Ácido Valproico/uso terapêutico , Idoso , Anticonvulsivantes/efeitos adversos , Biomarcadores/sangue , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Regulação para Baixo , Quimioterapia Combinada , Epilepsia/sangue , Epilepsia/etiologia , Epilepsia/fisiopatologia , Feminino , Proteína HMGB1/sangue , Humanos , Interleucina-6/sangue , Lamotrigina/efeitos adversos , Masculino , Metaloproteinase 9 da Matriz/sangue , Pessoa de Meia-Idade , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo , Resultado do Tratamento , Ácido Valproico/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA