Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Sep Sci ; 46(17): e2300331, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37438987

RESUMO

An efficient strategy for the identification of potential nephroprotective substances in Zhu-Ling decoction has been established with the integration of absorbed components characterization, pharmacokinetics, and activity evaluation. A qualitative method was developed to characterize the chemical constituents absorbed components in vivo of Zhu-Ling decoction by using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. A quantitative method was established and validated for the simultaneous determination of eight compounds in rat plasma by using ultra-performance liquid chromatography-triple quadruple tandem mass spectrometry. Finally, the nephroprotective activities of absorbed components with high exposure were assessed by cell survival rate, superoxide dismutase, and malondialdehyde activities in hydrogen peroxide-induced Vero cells. As a result, 111 compounds in Zhu-Ling decoction and 36 absorbed components were identified in rat plasma and urine, and poricoic acid A, poricoic acid B, alisol A, 16-oxo-alisol A, and dehydro-tumulosic acid had high exposure levels in rat plasma. Finally, poricoic acid B, poricoic acid A, 16-oxo-alisol A, and dehydro-tumulosic acid showed remarkable nephroprotective activity against Vero cells damage induced by hydrogen peroxide. Besides, superoxide dismutase and malondialdehyde activities were obviously regulated in hydrogen peroxide-induced Vero cells by treatment with the four compounds mentioned above. Therefore, these four compounds were considered to be effective substances of Zhu-Ling decoction due to their relatively high exposure in vivo and biological activity. This study provided a chemical basis for the action mechanism of Zhu-Ling decoction in the treatment of chronic kidney diseases.


Assuntos
Medicamentos de Ervas Chinesas , Triterpenos , Chlorocebus aethiops , Ratos , Animais , Peróxido de Hidrogênio , Células Vero , Espectrometria de Massas/métodos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Cromatografia Líquida de Alta Pressão/métodos
2.
J Sep Sci ; 46(2): e2200723, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36401831

RESUMO

Codonopsis radix was commonly used as food materials or herbal medicines in many countries. However, the comprehensive analysis of chemical constituents, and in vivo xenobiotics of Codonopsis radix remain unclear. In the present study, an integrated strategy with feature-based molecular networking using ultra-high-performance liquid chromatography coupled with mass spectrometry was established to systematically screen the chemical constituents and the in vivo xenobiotics of Codonopsis radix. A step-by-step manner based on a composition database, visual structure classification, discriminant ions, and metabolite software prediction was proposed to overcome the complexities due to the similar structure of chemical constituents and metabolites of Codonopsis radix. As a result, 103 compounds were tentatively characterized, 20 of which were identified by reference standards. Besides, a total of 50 xenobiotics were detected in vivo, including 26 prototypes and 24 metabolites, while the metabolic features of the pyrrolidine alkaloids were elucidated for the first time. The metabolism reactions of pyrrolidine alkaloids and sesquiterpene lactones included oxidation, methylation, hydration, hydrogenation, demethylation, glucuronidation, and sulfation. This study provided a generally applicable approach to the comprehensive investigation of the chemical and metabolic profile of traditional Chinese medicine and offered reasonable guidelines for further screening of quality control indicators and pharmacodynamics mechanism of Codonopsis radix.


Assuntos
Alcaloides , Codonopsis , Medicamentos de Ervas Chinesas , Ratos , Animais , Medicamentos de Ervas Chinesas/análise , Codonopsis/química , Codonopsis/metabolismo , Ratos Sprague-Dawley , Cromatografia Líquida de Alta Pressão/métodos , Xenobióticos/metabolismo , Espectrometria de Massas/métodos , Alcaloides/química , Pirrolidinas
3.
J Sep Sci ; 45(13): 2177-2189, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35478323

RESUMO

In the present study, a specific and sensitive approach using ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry was developed and validated for the quantitative analysis of 14 constituents in rat plasma, liver, and heart. The method was fully validated and successfully applied to pharmacokinetic, hepatic disposition, and heart tissue distribution studies of 14 compounds after the oral administration of Qi-Li-Qiang-Xin capsule. Ginsenoside Rb1, alisol A, astragaloside IV, and periplocymarin were found to be highly exposed in rat plasma, while toxic components such as hypaconitine, mesaconitine, and periplocin had low circulation levels in vivo. Moreover, sinapine thiocyanate, neoline, formononetin, calycosin, and alisol A exhibited significant liver first-pass effects. Notably, high levels of alisol A, periplocymarin, benzoylmesaconine, and benzoylhypaconine were observed in the heart. Based on high exposure and appropriate pharmacokinetic features in the systemic plasma and heart, astragaloside IV, ginsenoside Rb1, periplocymarin, benzoylmesaconine, benzoylhypaconine, and alisol A can be considered as the main potentially effective components. Ultimately, the results provide relevant information for discovery of effective substances, as well as further anti-heart failure action mechanism investigations of Qi-Li-Qiang-Xin capsule.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Administração Oral , Animais , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Fígado/química , Ratos , Espectrometria de Massas em Tandem/métodos , Distribuição Tecidual
4.
Biomed Chromatogr ; 34(4): e4807, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32020626

RESUMO

Periplocae Cortex, named Xiang-Jia-Pi in China, has been widely used to treat autoimmune diseases, especially rheumatoid arthritis. However, the in vivo substances of Periplocae Cortex remain unknown yet. In this study, an ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used for profiling the chemical components and related metabolites of Periplocae Cortex. A total of 98 constituents were identified or tentatively characterized in Periplocae Cortex: 42 C21 steroidal glycosides, 10 cardiac glycosides, 23 organic acids, 4 aldehydes, 7 triterpenes, and 12 other types. Among them, 18 components were unambiguously identified by comparison with reference standards. In addition, 176 related xenobiotics (34 prototypes and 142 metabolites) were screened out and characterized in rats' biosamples (plasma, urine, bile, and feces) after the oral administration of Periplocae Cortex. Moreover, the metabolic fate of periplocoside S-4a, a C21 steroidal glycoside, was proposed for the first time. In summary, phase II reactions (methylation, glucuronidation, and sulfation), phase I reactions (hydrolysis reactions, oxygenation, and reduction), and their combinations were the predominant metabolic reactions of Periplocae Cortex in rat. It is the first report to reveal the in vivo substances and metabolism feature of Periplocae Cortex. This study also provided meaningful information for further pharmacodynamics study of Periplocae Cortex, as well as its quality control research.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/metabolismo , Espectrometria de Massas/métodos , Periploca/química , Administração Oral , Aldeídos/análise , Aldeídos/química , Animais , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/química , Glicosídeos/análise , Glicosídeos/química , Masculino , Casca de Planta/química , Raízes de Plantas/química , Ratos , Ratos Sprague-Dawley , Triterpenos/análise , Triterpenos/química
5.
Biomed Chromatogr ; 32(4)2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29226353

RESUMO

Xian-Ling-Gu-Bao capsule (XLGB), a well-known traditional Chinese medicine prescription, has been used for the prevention and treatment of osteoporosis. The safety and efficacy of XLGB have been confirmed based on the principle of evidence-based medicine. XLGB is usually administered orally, after which its multiple components are brought into contact with intestinal microflora in the alimentary tract and biotransformed. However, investigations on the comprehensive metabolic profile of XLGB are absent. In this study, 12 representative compounds bearing different typical structures (including iridoid glycosides, prenylated flavonol glycosides, prenylated flavonoids, triterpenoid saponins, steroidal saponins, coumarins and monoterpene phenols) were selected and then investigated for their biotransformation in rat intestinal microflora. In addition, the metabolic profile of XLGB in rat intestinal microflora was investigated by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. As a result, a total of 87 biotransformation components were identified from incubated solutions of 12 representative compounds and XLGB, which underwent 16 metabolic reactions (including deglycosylation, glycosylation, dehydrogenation, hydrogenation, oxidation, epoxidation, hydroxylation, dehydration, hydration, hydrolysis, methylation, isomerization, cyclization, pyrolysis reaction, amino acid conjugation and nucleophilic addition reaction with NH3 ). This demonstrated that the deglycosylation reaction by cleavage of the sugar moieties is the main metabolic pathway of a variety of glycosides, including prenylated flavonol glycosides, coumarin glycosides, iridoid glycosides and saponins. In addition, compared with the biotransformation of 12 representative compounds, a different biotransformed fate was observed in the XLGB incubated samples of rat intestinal microflora. It is worth noting that the amino acid conjugation was first discovered in the metabolism of prenylated flavonol glycosides in rat intestinal microflora.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/metabolismo , Microbioma Gastrointestinal/fisiologia , Metaboloma/fisiologia , Espectrometria de Massas em Tandem/métodos , Animais , Biotransformação , Medicamentos de Ervas Chinesas/química , Glicosídeos/análise , Glicosídeos/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Saponinas/análise , Saponinas/metabolismo
6.
J Pharm Biomed Anal ; 223: 115157, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36379101

RESUMO

Qi-Lin pill (QLP) is an effective traditional Chinese medicine prescription (TCMP) that has been used for the treatment of the oligoasthenozoospermia in China. Recently, some articles described the pharmacological effects of QLP and multiple ingredients in QLP contribute to its effects. However, the pharmacokinetic and target tissue distribution data of QLP are still unknown. In the present study, according to the Bioanalytical Method Validation Guidance of FDA, a sensitive and selective UPLC-MS/MS method was developed and validated for simultaneous determination of multiple constituents in rat plasma and testicular tissue, including morusimic acid A, codonopyrridium B, magnoflorine, emodin, 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucoside (THSG), ecliptasaponin A, paeoniflorin, albiflorin, gallic acid, danshensu, salvianolic acid A, catechin, isosinensetin, nobiletin, formononetin, calycosin, icariside II, icariin and epimedin C. For 19 analytes, the LLOQs reached 0.01-4 ng/mL. And all calibration curves showed favorable linearity (r ≥ 0.9903) in linear ranges. The intra-day and inter-day precision (relative standard deviation) for all analytes was less than 14.92 %, and the accuracies (as relative error) were in the range of - 6.44 % to 6.22 %. Extraction recoveries and matrix effects of analytes and IS were acceptable. All analytes were stable during the assay and storage in plasma samples. The method was successfully applied for the pharmacokinetics and testis distribution of multiple chemical constituents in QLP after a single oral dose. As a result, high exposure of danshensu, gallic acid, paeoniflorin and albiflorin were observed in rat plasma and testicular tissue. Among the flavonoids, isosinensetin and nobiletin had high exposure in testicular tissue. Moreover, alleviation of progesterone reduction was evaluated in H2O2-induced R2C leydig cells, and danshensu, gallic acid, paeoniflorin, albiflorin and nobiletin showed potent activity. Therefore, these five components were considered to be the effective components of QLP due to their relatively high exposure in vivo and biological activity. This finding also provided relevant information on action mechanism of QLP in the treatment of oligoasthenozoospermia.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Animais , Masculino , Ratos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Medicamentos de Ervas Chinesas/farmacocinética , Ácido Gálico , Peróxido de Hidrogênio , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Testículo , Distribuição Tecidual
7.
Transl Lung Cancer Res ; 11(3): 404-419, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35399566

RESUMO

Background: The mechanisms involved in the malignant progression of lung adenocarcinoma (LUAD) are still inconclusive. Fibrinogen-like protein 1 (FGL1) and LAG3 are a pair of immune checkpoints that create an inhibitory immune microenvironment in tumors. However, other roles of FGL1 in LUAD have not been extensively studied. Our study aims to explore the role of FGL1 in the malignant progression of LUAD and to provide new therapeutic targets and strategies for LUAD treatment. Methods: Differential gene expression of FGL1 was analyzed using the Gene Expression Profiling Interactive Analysis (GEPIA), Oncomine, UALCAN, and Gene Expression Omnibus (GEO) databases. A pan-cancer analysis was conducted using the Oncomine, TIMER, and UALCAN databases. A total of 140 tumor tissues and paired normal tissues were collected, IHC and immunofluorescence staining were used to explore the expression of FGL1. GeneMANIA database and STRING database were used to analyze gene-gene interaction and protein-protein interaction, respectively. A mutation analysis was conducted using the cBioPortal database, and an immune infiltration analysis was conducted using the TIMER database. A survival analysis was carried out using the GEPIA and PrognoScan database. The knockdown of FGL1 was confirmed by western blot (WB) and immunofluorescence staining. Cell proliferation was tested by cell cycle analysis and real-time cell analysis. RNA sequencing (RNA-seq) was used to explore the differential genes of FGL1 knockdown in LUAD cells. Results: Multiple databases showed that FGL1 was highly expressed in LUAD. The results of IHC indicated that FGL1 was highly expressed in the cytoplasm of LUAD cells. FGL1 was negatively associated with immune infiltration in LUAD. The main mutation of FGL1 is deep deletion, the altered group and high expression group indicated poor prognosis. The downregulation of FGL1 lead to a significantly decreased percentage of PC9 cells in S phase, but had little effect on the proliferation of Jurkat T cells. RNA-seq and GSEA analysis indicated that the differential genes were mainly enriched in MYC-target genes, which suggested that the downregulation of FGL1 inhibited cell proliferation by regulating MYC-target genes. Conclusions: FGL1 exerts in LUAD proliferation in addition to immune regulation. The downregulation of FGL1 inhibits the proliferation of LUAD cells by regulating MYC-target genes. Thus, FGL1 may be a novel therapeutic target in LUAD.

8.
Front Immunol ; 13: 1014053, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268014

RESUMO

Rational: Lung cancer is the most common tumor worldwide, with the highest mortality rate and second highest incidence. Immunotherapy is one of the most important treatments for lung adenocarcinoma (LUAD); however, it has relatively low response rate and high incidence of adverse events. Herein, we explored the therapeutic potential of fibrinogen-like protein 1 (FGL1) for LUAD. Methods: Data from GEPIA and ACLBI databases were assessed to explore gene-gene correlations and tumor immune infiltration patterns. A total of 200 patients with LUAD were recruited. FGL1 levels in the serum and cellular supernatant were determined by enzyme-linked immunosorbent assay. In vitro and in vivo experiments were performed to assess the effect FGL1 on the proliferation of LUAD cells. Cocultures were performed to explore the effect of FGL1 knockdown in lung cancer cells on T cells, concerning cytokine secretion and viability. PROMO and hTFtarget databases were used for transcription factor prediction. Quantitative polymerase chain reaction (qPCR), chromatin immunoprecipitation, and dual luciferase reporter assays were performed to validate the identified transcription factor of FGL1. Immunoprecipitation, mass spectrometry and gene ontology analysis were performed to explore the downstream partners of FGL1. Results: FGL1 expression in LUAD was positively associated with PDL1, but not for PD1 expression. Moreover, FGL1 was positively associated with the CD3D expression and negatively associated with FOXP3, S100A9, and TPSB2 within the tumor site. FGL1 promotes the secretion of interleukin-2 by T cells in vitro, simultaneously inducing their apoptosis. Indeed, YY1 is the upstream molecule of FGL1 was found to be transcriptionally regulated by YY1 and to directly by to MYH9 to promote the proliferation of LUAD cells in vitro and in vivo. Conclusions: FGL1 is involved in the immunological and proliferative regulation of LUAD cells by controlling the secretion of important immune-related cytokines via the YY1-FGL1-MYH9 axis. Hence, targeting FGL1 in LUAD may pave the way for the development of new immunotherapies for tackling this malignancy.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Interleucina-2/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Linhagem Celular Tumoral , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Fibrinogênio/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
9.
Biomark Res ; 10(1): 49, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831836

RESUMO

Immunotherapy has become the major treatment for tumors in clinical practice, but some intractable problems such as the low response rate and high rates of immune-related adverse events still hinder the progress of tumor immunotherapy. Hence, it is essential to explore additional immunotherapy treatment targets. In this review, we focus on the structure, expression and expression-related mechanisms, interactions, biological functions and the progress in preclinical/clinical research of IGSF11 and VISTA in tumors. We cover the progress in recent research with this pair of immune checkpoints in tumor immune regulation, proliferation, immune resistance and predictive prognosis. Both IGSF11 and VISTA are highly expressed in tumors and are modulated by various factors. They co-participate in the functional regulation of immune cells and the inhibition of cytokine production. Besides, in the downregulation of IGSF11 and VISTA, both inhibit the growth of some tumors. Preclinical and clinical trials all emphasize the predictive role of IGSF11 and VISTA in the prognosis of tumors, and that the predictive role of the same gene varies from tumor to tumor. At present, further research is proving the enormous potential of IGSF11 and VISTA in tumors, and especially the role of VISTA in tumor immune resistance. This may prove to be a breakthrough to solve the current clinical immune resistance, and most importantly, since research has focused on VISTA but less on IGSF11, IGSF11 may be the next candidate for tumor immunotherapy.

10.
Cancers (Basel) ; 14(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36358792

RESUMO

Cancer remains a serious social health problem, and immunotherapy has become the major treatments in tumor treatment. Additionally, improving the efficiency and safety of treatment is necessary. Further, more therapy targets are warranted for future tumor treatments. In this review, in addition to examining the currently recognized role of immune regulation, we focus on the proliferative role of 15 immune checkpoints in various tumors, including PD1, PD-L1, FGL1, CD155, CD47, SIRPα, CD276, IDO1, SIGLEC-15, TIM3, Galectin-9, CD70, CD27, 4-1BBL, and HVEM. We managed to conclude that various immune checkpoints such as PD1/PD-L1, FGL1, CD155, CD47/SIRPα, CD276, and SIGLEC-15 all regulate the cell cycle, and specifically through Cyclin D1 regulation. Furthermore, a variety of signal pathways engage in proliferation regulation, such as P13K, AKT, mTOR, and NK-κB, which are also the most common pathways involved in the regulation of immune checkpoint proliferation. Currently, only PD1/PD-L1, CD47/SIRPα, TIM3/Galectin-9, and CD70/CD27 checkpoints have been shown to interact with each other to regulate tumor proliferation in pairs. However, for other immune checkpoints, the role of their receptors or ligands in tumor proliferation regulation is still unknown, and we consider the enormous potential in this area. An increasing number of studies have validated the various role of immune checkpoints in tumors, and based on this literature review, we found that most of the immune checkpoints play a dual regulatory role in immunity and proliferation. Therefore, the related pathways in proliferation regulation can served the role of therapy targets in tumor therapy. Further, great potential is displayed by IDO1, SIGLEC-15, 4-1BBL, and HVEM in tumor proliferation regulation, which may become novel therapy targets in tumor treatment.

11.
J Pharm Biomed Anal ; 195: 113888, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33418443

RESUMO

Sex steroid hormones could directly affect the bone metabolism by regulating cell physiological functions. In female, it inevitably causes the abnormal levels of sex steroid hormones at post-menopause in vivo. Ovariectomized rats and mice are classic animal models of osteoporosis to better understand the action mechanism of anti-osteoporosis drugs. However, it is not clear whether Xian-Ling-Gu-Bao capsule (XLGB), a kidney-tonifying traditional Chinese medicine prescription, treat osteoporosis via regulating multiple sex steroid hormones. In the present study, a reliable method involving ultra high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC/TQ-XS-MS) was developed for simultaneous quantitative analysis of ten sex steroid hormones (three estrogens, five androgens and two progestogens) in rat and mouse serum. The results of methodology were acceptable. The validated method was then successfully applied in the determination of the levels of sex steroid hormones in ovariectomy-induced osteoporosis rats, as well as drug (17ß-estradiol and XLGB) intervened rats. As a result, XLGB could not only significantly increase the level of 17ß-estradiol, but also improve the levels of progesterone, 17α-hydroxyprogesterone and androstenedione. Combined with molecular docking results and pharmacokinetic parameters, psoralen, isopsoralen and sweroside were considered as the key effective components of XLGB to activate adenylyl cyclase on promoting the biosynthesis of multiple sex steroid hormones. It is the first time to evaluate the regulatory effect of kidney-tonifying traditional Chinese medicine prescription on the levels of steroids in ovariectomy-induced osteoporosis rat, as well as the potential substance basis and mechanism of steroid hormone regulation.


Assuntos
Osteoporose , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Hormônios Esteroides Gonadais , Humanos , Camundongos , Simulação de Acoplamento Molecular , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Ovariectomia , Ratos , Ratos Sprague-Dawley
12.
Artigo em Inglês | MEDLINE | ID: mdl-34058528

RESUMO

Xian-Ling-Gu-Bao capsule (XLGB) has been proven to prevent and treat osteoporosis. However, as a long-term oral formula, XLGB's effects on the metabolic capacity, structure and function of gut microbiota have yet to be elucidated in ovariectomized (OVX) rats. Our objectives were to evaluate the capacity of gut microbiota for metabolizing XLGB ingredients and to assess the effect of this prescription on gut microbiota. Herein, an integrated analysis that combined ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and ultrahigh-performance liquid chromatography tandem triple quadrupole mass spectrometry (UPLC-TQD-MS) was conducted to determine the metabolic capacity of gut microbiota. The effects of XLGB on gut microbiota were explored by metagenomic sequencing in OVX rats. Fecal samples from each group were collected after intragastric administration for three months. In total, 64 biotransformation products were fully characterized with rat gut microbiota from the OVX group and the XLGB group. The deglycosylation reaction was the main biotransformation pathway in core structures in the group that was incubated with XLGB. Compared with the OVX group, different biotransformation products and pathways of the XLGB group after incubation for 2 h and 8 h were described. After three months of feeding with XLGB, the domesticated gut microbiota was conducive to the production of active absorbed components via deglycosylation, such as icaritin, psoralen and isopsoralen. Comparisons of the gut microbiota of the OVX and XLGB groups showed differences in the relative abundances of the two dominant bacterial divisions, namely, Firmicutes and Bacteroidetes. The proportion of Firmicutes was significantly lower and that of Bacteroidetes was significantly higher in the XLGB group. This result demonstrated that XLGB could provide a basis for the treatment of osteoporosis by regulating lipid and bile acid metabolism. In addition, the increase in Lactobacillus, Bacteroides and Prevotella could be an important factor that led to easier production of active absorbed aglycones in the XLGB group. Our observation provided further evidence of the importance of gut microbiota in the metabolism and potential activity of XLGB.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ovariectomia , Animais , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
13.
J Ethnopharmacol ; 279: 114396, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34246738

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The overall therapeutic effect of traditional Chinese medicine formulae (TCMF) was achieved by the interactions of multiple components with multiple targets. However, current pharmacology research strategies have struggled to identify effective substance groups and encountered challenges in elucidating the underlying mechanisms of TCMF. AIM: In this study, a comprehensive strategy was proposed and applied to elucidate the interactions of the multiple components that underlie the functions of the famous TCMF: Xian-Ling-Gu-Bao (XLGB) capsule on bone metabolism in vivo and to elucidate the molecular mechanisms underlying the effects of XLGB on bone cells, especially on osteoblasts. METHODS: The efficacy of XLGB in the protection against bones loss in ovariectomized (OVX) rats was confirmed by Micro-CT analysis. The anti-osteoporosis mechanism involved in the systemic regulatory actions of XLGB was elucidated by transcriptome sequencing analysis on bone marrow mesenchymal stem cells isolated from OVX rats. Moreover, the components absorbed in XLGB-treated plasma were characterized by mass spectrometry analysis, and subsequently, a standardized preparation process of drug-containing plasma was established. The synergistic osteogenic effect of the multiple components in plasma was investigated by a combination and then knockout of components using pre-osteoblast MC3T3-E1 cells. In order to decipher the underlying mechanism of XLGB, the targets of the absorbed components on bone were predicted by target prediction and network pharmacology analysis, then several interactions were validated by biochemical and cell-based assay. RESULTS: A total of 18 genes, including HDC, CXCL1/2, TNF, IL6 and Il1b, were newly found to be the major target genes regulated by XLGB. Interestingly, we found that a combination of the three absorbed components, i.e. MSP, rather than their single form at the same concentration, stimulated the formation of calcified nodules in MC3T3-E1 cells, suggesting a synergistic effect of these components. Besides, target prediction and experimental validation confirmed the binding affinity of corylin and icaritin for estrogen receptor α and ß, the inhibitory activity of isobavachin and isobavachalcone on glycogen synthase kinase-3ß, and the inhibitory activity of isobavachalcone on cathepsin K. The cell-based assay further confirmed the result of the biochemical assay. A network that integrated absorbed components of XLGB-targets-perturbation genes-pathways against osteoporosis was established. CONCLUSION: Our current study provides a new systemic strategy for discovering active ingredient groups of TCM formulae and understanding their underlying mechanisms.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Osteoporose/prevenção & controle , Células 3T3 , Administração Oral , Animais , Densidade Óssea/efeitos dos fármacos , Células da Medula Óssea , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia , Ovariectomia , Ligante RANK/farmacologia , Células RAW 264.7 , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Células-Tronco
14.
Front Immunol ; 12: 785091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111155

RESUMO

LAG3 is the most promising immune checkpoint next to PD-1 and CTLA-4. High LAG3 and FGL1 expression boosts tumor growth by inhibiting the immune microenvironment. This review comprises four sections presenting the structure/expression, interaction, biological effects, and clinical application of LAG3/FGL1. D1 and D2 of LAG3 and FD of FGL1 are the LAG3-FGL1 interaction domains. LAG3 accumulates on the surface of lymphocytes in various tumors, but is also found in the cytoplasm in non-small cell lung cancer (NSCLC) cells. FGL1 is found in the cytoplasm in NSCLC cells and on the surface of breast cancer cells. The LAG3-FGL1 interaction mechanism remains unclear, and the intracellular signals require elucidation. LAG3/FGL1 activity is associated with immune cell infiltration, proliferation, and secretion. Cytokine production is enhanced when LAG3/FGL1 are co-expressed with PD-1. IMP321 and relatlimab are promising monoclonal antibodies targeting LAG3 in melanoma. The clinical use of anti-FGL1 antibodies has not been reported. Finally, high FGL1 and LAG3 expression induces EGFR-TKI and gefitinib resistance, and anti-PD-1 therapy resistance, respectively. We present a comprehensive overview of the role of LAG3/FGL1 in cancer, suggesting novel anti-tumor therapy strategies.


Assuntos
Antígenos CD/imunologia , Fibrinogênio/imunologia , Neoplasias/imunologia , Animais , Antineoplásicos Imunológicos/imunologia , Humanos , Ligantes , Microambiente Tumoral/imunologia
15.
Front Oncol ; 11: 693321, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367975

RESUMO

This study highlights aspects of the latest clinical research conducted on the relationship between immune checkpoints and tumor metastasis. The overview of each immune checkpoint is divided into the following three sections: 1) structure and expression; 2) immune mechanism related to tumor metastasis; and 3) clinical research related to tumor metastasis. This review expands on the immunological mechanisms of 17 immune checkpoints, including TIM-3, CD47, and OX-40L, that mediate tumor metastasis; evidence shows that most of these immune checkpoints are expressed on the surface of T cells, which mainly exert immunomodulatory effects. Additionally, we have summarized the roles of these immune checkpoints in the diagnosis and treatment of metastatic tumors, as these checkpoints are considered common predictors of metastasis in various cancers such as prostate cancer, non-Hodgkin lymphoma, and melanoma. Moreover, certain immune checkpoints can be used in synergy with PD-1 and CTLA-4, along with the implementation of combination therapies such as LIGHT-VTR and anti-PD-1 antibodies. Presently, most monoclonal antibodies generated against immune checkpoints are under investigation as part of ongoing preclinical or clinical trials conducted to evaluate their efficacy and safety to establish a better combination treatment strategy; however, no significant progress has been made regarding monoclonal antibody targeting of CD28, VISTA, or VTCN1. The application of immune checkpoint inhibitors in early stage tumors to prevent tumor metastasis warrants further evidence; the immune-related adverse events should be considered before combination therapy. This review aims to elucidate the mechanisms of immune checkpoint and the clinical progress on their use in metastatic tumors reported over the last 5 years, which may provide insights into the development of novel therapeutic strategies that will assist with the utilization of various immune checkpoint inhibitors.

16.
Transl Lung Cancer Res ; 10(12): 4617-4630, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35070765

RESUMO

BACKGROUND: Primary tracheobronchial neoplasm is rare yet poses a serious threat to life. Due to its low incidence, the immune microenvironment of such tumors remained unclear. This study aimed to clarify the expression of programmed death-ligand 1 (PD-L1) and infiltration of immune cells in primary tracheobronchial neoplasm, which might be useful for guiding treatment and evaluating clinical outcome. METHODS: We assessed retrospectively the expression of PD-L1 and infiltration in cells expressing CD8, CD16, CD68, CD163 and FOXP3 in 21 patients with primary tracheobronchial neoplasm who underwent surgery in Tangdu Hospital from January 2016 to July 2021. The expression of PD-L1 was assessed based on the tumor proportion score system. The density of immune cells was analyzed by automatic image analysis software. RESULTS: In this study, all of 16 participants with adenoid cystic carcinoma (ACC) had no expression of PD-L1, whereas 4/5 (80%) of those with squamous cell carcinomas (SCC) were positive for PD-L1 expression. Compared with ACC, the density of FOXP3+ cells in both the intratumoral region and peritumoral region was higher in SCC (P<0.01). The density of FOXP3+ cells was significantly higher than that of CD8+, CD16+, and CD163+ cells in SCC in the intratumoral region (P<0.01). In contrast, the density of FOXP3+ cells was significantly lower than that of CD8+, CD16+, and CD68+ cells in ACC in both the intratumoral region and peritumoral regions. The density of CD68+ cells was significantly higher than that of CD8+ cells (P<0.05) and CD163+ cells (P<0.01) in ACC in the intratumoral region. Furthermore, the tumors of patients with metastasis more commonly of immune-excluded status, in which the CD8+ cells accumulated in peritumoral region. CONCLUSIONS: This study demonstrated that the expression of PD-L1 in primary tracheobronchial neoplasm was mainly concentrated in patients with SCC. In the immune microenvironment of SCC, FOXP3+ cells were the dominant immune cells, while in the immune microenvironment of ACC, CD68+ cells were the main immune cells. Therefore, the immune microenvironment was significantly different in primary tracheobronchial neoplasm according to histology.

17.
Phytomedicine ; 68: 153146, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32028183

RESUMO

BACKGROUND: Dipsaci Radix has been clinically used for thousands of years in China for strengthening muscles and bones. Sweroside is the major active iridoid glycoside isolated from Dipsaci Radix. It has been reported that sweroside can promote alkaline phosphatase (ALP) activity in both the human osteosarcoma cell line MG-63 and rat osteoblasts. However, the underlying mechanism involved in these osteoblastic processes is poorly understood. PURPOSE: This study aimed to characterize the bone protective effects of sweroside and to investigate the signaling pathway that is involved in its actions in MC3T3-E1 cells. METHODS: Cell proliferation, differentiation and mineralization were evaluated by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, ALP test and Alizarin Red S staining, respectively. The concentration of sweroside in intracellular and extracellular fluids was determined by ultra-performance liquid chromatography coupled to triple quadrupole xevo-mass spectrometry (UPLC/TQ-XS-MS). Proteins associated with the osteoblastic signaling pathway were analysed by western blot and immunofluorescence methods. RESULTS: Sweroside did not obviously affect the proliferation but significantly promoted the ALP activity and mineralization of MC3T3-E1 cells. The maximal absorption amount 0.465 ng/ml (1.3 × 10-9 M) of sweroside was extremely lower than the tested concentration of 358.340 ng/ml (10-6 M), indicating an extremely low absorption rate by MC3T3-E1 cells. Moreover, the ALP activity, the protein expression of ER-α and G protein-coupled receptor 30 (GPR30) induced by sweroside were markedly blocked by both the ER antagonist ICI 182780 and the GPR30 antagonist G15. In addition, sweroside also activated the phosphorylation of p38 kinase (p-p38), while the phosphorylation effects together with ALP and mineralization activities were completely blocked by a p38 antagonist, SB203580. Additionally, the phosphorylation of p38 induced by sweroside were markedly blocked by both the ER antagonist ICI 182780 and the GPR30 antagonist G15. CONCLUSIONS: The present study indicated that sweroside, as a potential agent in treatment of osteoporosis, might exert beneficial effects on MC3T3-E1 cells by interaction with the membrane estrogen receptor-α and GPR30 that then activates the p38 signaling pathway. This is the first study to report the specific mechanism of the effects of sweroside on osteoblastic differentiation and mineralization of MC3T3-E1 cells.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Glucosídeos Iridoides/farmacologia , Osteoblastos/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Camundongos , Osteoblastos/metabolismo , Fosforilação/efeitos dos fármacos
18.
J Chromatogr Sci ; 58(6): 494-503, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32236407

RESUMO

Xian-Ling-Gu-Bao (XLGB), a famous traditional Chinese medicine prescription consisted of six herbal medicines, was used for prevention and treatment of osteoporosis in China. As an oral formulation, the multiple components contained in XLGB were inevitably biotransformed by the intestinal microflora before absorption via the gastrointestinal tract. However, the dynamic profiles of biotransformation products of XLGB remain unknown. In this paper, a rapid and sensitive ultra-performance liquid chromatography tandem triple quadrupole mass spectrometry method was developed for the simultaneous quantitative analysis of multiple biotransformation products of XLGB with rat intestinal microflora. For 10 selected quantitative compounds, all calibration curves revealed good linearity (r2 > 0.99) within the sampling ranges considered. The whole intra- and inter-day precisions (as relative standard deviation) of all analytes were <13.5%, and the accuracies (as relative error) were in the range from -11.3 to 11.2%. The lower limits of quantification were 20, 10, 5, 20, 2, 2, 2, 5, 2 and 2 ng/mL for sweroside, timosaponin BII, epimedin C, asperosaponin VI, psoralen, isobavachin, icariside II, timosaponin AIII, isobavachalcone and icaritin, respectively. The matrix effects, extraction recoveries and stabilities were all satisfactory. Meanwhile, dynamic profiles of 21 additional biotransformation products were also monitored by their area-time curves. The analytical method was successfully applied to describe dynamic profiles of 31 biotransformation products of XLGB and the recipes with removal of a definite composed herbal medicine (Anemarrhenae Rhizoma or Rehmanniae Radix).


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal/fisiologia , Espectrometria de Massas em Tandem/métodos , Animais , Biotransformação , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo , Fezes/microbiologia , Limite de Detecção , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
19.
J Pharm Biomed Anal ; 177: 112836, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31473481

RESUMO

Xian-Ling-Gu-Bao capsule (XLGB) is an effective traditional Chinese medicine prescription (TCMP) that is used for the prevention and treatment of osteoporosis in China. A rapid, simple, efficient and stable method based on UPLC-MS/MS technology was developed for simultaneous determination of multiple components of XLGB in rat plasma. Mass spectrometric detection was performed in multiple reaction monitoring (MRM) mode with electrospray ionization (ESI). For twenty-one selected quantitative prototypes, all calibration curves showed favourable linearity (r>0.9932) in linear ranges. The lower limits of quantification (LLOQs) were 2 ng/mL for psoralen (PL), 2.5 ng/mL for asperosaponin VI (AS), 1 ng/mL for isopsoralen (IPS) and sweroside (SW), 0.5 ng/mL for magnoflorine (MA), bavachinin (BVN), tanshinone IIA (TA), timosaponin BII (TBII) and icaritin (ICT), 0.1 ng/mL for epimedin B (EB) and epimedin C (EC), 0.05 ng/mL for icariin (IC), isobavachalcone (IBC), psoralidin (PD), bavachin (BV), bavachalcone (BC), epimedin A (EA) and isobavachin (IBV), 0.02 ng/mL for neobavaisoflavone (NEO) and icariside I (ICI) and 0.01 ng/mL for icariside II (ICII). The intra-day and inter-day (low, medium, high) precision (relative standard deviation) for all analytes was less than 8.63%, and the accuracies (as relative error) were in the range of -12.45% to 8.91%. Extraction recoveries and matrix effects of analytes and IS were acceptable. All analytes were stable during the assay and storage in plasma samples. The validated method was successfully applied to the pharmacokinetics (PK) studies of the twenty-one prototypes at pharmacodynamic doses (0.3 and 1 g/kg/day). In addition, dynamic profiles of 28 metabolites (phase II conjugates: 23 glucuronide conjugates, 2 sulfate conjugates and 3 glucuronide or sulfate conjugates) were also monitored by their area/IS area-time curves. As a result, coumarins, prenylated flavonoids from Psoraleae Fructus, alkaloids and prenylated flavonol glycosides from Epimedii Herba, and iridoid glycosides, triterpenoid saponins from Dipsaci Asperoidis Radix were considered to be the key effective substances of XLGB due to their high exposure and appropriate pharmacokinetic features. This is the first report to reveal pharmacodynamic ingredients by a reversed pharmacodynamic (PD) - pharmacokinetics (PK) study.


Assuntos
Medicamentos de Ervas Chinesas/farmacocinética , Espectrometria de Massas em Tandem/métodos , Administração Oral , Animais , Aporfinas/administração & dosagem , Aporfinas/sangue , Aporfinas/farmacocinética , Cápsulas , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/análise , Feminino , Ficusina/administração & dosagem , Ficusina/sangue , Ficusina/farmacocinética , Flavonoides/administração & dosagem , Flavonoides/sangue , Flavonoides/farmacocinética , Furocumarinas/administração & dosagem , Furocumarinas/sangue , Furocumarinas/farmacocinética , Glucosídeos Iridoides/administração & dosagem , Glucosídeos Iridoides/sangue , Glucosídeos Iridoides/farmacocinética , Modelos Animais , Ratos , Saponinas/administração & dosagem , Saponinas/sangue , Saponinas/farmacocinética
20.
J Pharm Biomed Anal ; 188: 113402, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32544759

RESUMO

Qi-Lin pill (QLP), a traditional Chinese medicine prescription (TCMP), composed of fifteen herbal medicines, has been widely used for the treatment of male infertility. However, an in-depth understanding of the chemical constituents of QLP and its in vivo metabolic study is lacking. In this study, a method using ultra-performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry (UPLC/Q-TOF-MS) was established for comprehensive analysis of chemical constituents of QLP and their metabolites in plasma, urine, bile and feces after gastric perfusion. The method guaranteed the fast discovery of representative structural fragment information and provided efficient structure clues for identification based on data from MSE mode. As a result, a total of 202 constituents were unambiguously identified or tentatively characterized. In addition, a total of 203 QLP-related xenobiotics were characterized, including 41 (22 prototypes and 19 metabolites) in plasma, 144 (47 prototypes and 97 metabolites) in urine, 50 (27 prototypes and 23 metabolites) in bile and 68 (51 prototypes and 17 metabolites) in feces. The metabolism reactions included phase I reactions (demethylation, hydroxylation, deglycosylation, deoxygenation, hydrogenation, dehydration, oxidation and hydrolysis) and phase II reactions (methylation, conjugation with glucuronide and sulfate). This was the first comprehensive investigation on chemical constituents and metabolic profiles of QLP in vivo, and the results provided chemical foundation for further research on effective substances and action mechanism of QLP.


Assuntos
Medicamentos de Ervas Chinesas , Qi , Administração Oral , Animais , Cromatografia Líquida de Alta Pressão , Masculino , Espectrometria de Massas , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA