Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 363, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609871

RESUMO

BACKGROUND: Cold hardiness is fundamental for amphibians to survive during the extremely cold winter on the Qinghai-Tibet plateau. Exploring the gene regulation mechanism of freezing-tolerant Rana kukunoris could help us to understand how the frogs survive in winter. RESULTS: Transcriptome of liver and muscle of R. kukunoris collected in hibernation and spring were assisted by single molecule real-time (SMRT) sequencing technology. A total of 10,062 unigenes of R. kukunoris were obtained, and 9,924 coding sequences (CDS) were successfully annotated. Our examination of the mRNA response to whole body freezing and recover in the frogs revealed key genes concerning underlying antifreeze proteins and cryoprotectants (glucose and urea). Functional pathway analyses revealed differential regulated pathways of ribosome, energy supply, and protein metabolism which displayed a freeze-induced response and damage recover. Genes related to energy supply in the muscle of winter frogs were up-regulated compared with the muscle of spring frogs. The liver of hibernating frogs maintained modest levels of protein synthesis in the winter. In contrast, the liver underwent intensive high levels of protein synthesis and lipid catabolism to produce substantial quantity of fresh proteins and energy in spring. Differences between hibernation and spring were smaller than that between tissues, yet the physiological traits of hibernation were nevertheless passed down to active state in spring. CONCLUSIONS: Based on our comparative transcriptomic analyses, we revealed the likely adaptive mechanisms of R. kukunoris. Ultimately, our study expands genetic resources for the freezing-tolerant frogs.


Assuntos
Resposta ao Choque Frio , Transcriptoma , Animais , Resposta ao Choque Frio/genética , Tibet , Perfilação da Expressão Gênica , Ranidae/genética , Anuros
2.
EMBO J ; 39(18): e104365, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32696520

RESUMO

Hair follicle stem cells (HFSCs) are maintained in a quiescent state until activated to grow, but the mechanisms that reactivate the quiescent HFSC reservoir are unclear. Here, we find that loss of Sirt7 in mice impedes hair follicle life-cycle transition from telogen to anagen phase, resulting in delay of hair growth. Conversely, Sirt7 overexpression during telogen phase facilitated HSFC anagen entry and accelerated hair growth. Mechanistically, Sirt7 is upregulated in HFSCs during the telogen-to-anagen transition, and HFSC-specific Sirt7 knockout mice (Sirt7f/f ;K15-Cre) exhibit a similar hair growth delay. At the molecular level, Sirt7 interacts with and deacetylates the transcriptional regulator Nfatc1 at K612, causing PA28γ-dependent proteasomal degradation to terminate Nfatc1-mediated telogen quiescence and boost anagen entry. Cyclosporin A, a potent calcineurin inhibitor, suppresses nuclear retention of Nfatc1, abrogates hair follicle cycle delay, and promotes hair growth in Sirt7-/- mice. Furthermore, Sirt7 is downregulated in aged HFSCs, and exogenous Sirt7 overexpression promotes hair growth in aged animals. These data reveal that Sirt7 activates HFSCs by destabilizing Nfatc1 to ensure hair follicle cycle initiation.


Assuntos
Folículo Piloso/enzimologia , Sirtuínas/metabolismo , Células-Tronco/enzimologia , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Senescência Celular/efeitos dos fármacos , Ciclosporina/farmacologia , Camundongos , Camundongos Knockout , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Sirtuínas/genética
3.
J Nanobiotechnology ; 22(1): 125, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520022

RESUMO

After intracerebral hemorrhage (ICH) occurs, the overproduction of reactive oxygen species (ROS) and iron ion overload are the leading causes of secondary damage. Removing excess iron ions and ROS in the meningeal system can effectively alleviate the secondary damage after ICH. This study synthesized ginsenoside Rb1 carbon quantum dots (RBCQDs) using ginsenoside Rb1 and ethylenediamine via a hydrothermal method. RBCQDs exhibit potent capabilities in scavenging ABTS + free radicals and iron ions in solution. After intrathecal injection, the distribution of RBCQDs is predominantly localized in the subarachnoid space. RBCQDs can eliminate ROS and chelate iron ions within the meningeal system. Treatment with RBCQDs significantly improves blood flow in the meningeal system, effectively protecting dying neurons, improving neurological function, and providing a new therapeutic approach for the clinical treatment of ICH.


Assuntos
Ginsenosídeos , Pontos Quânticos , Camundongos , Animais , Espécies Reativas de Oxigênio , Hemorragia Cerebral/tratamento farmacológico , Ferro , Íons
4.
J Asian Nat Prod Res ; : 1-8, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758009

RESUMO

Macrophorins H (4) and L (5), two rare HMG-conjugate macrophorins along with three known macrophorins (1-3), three DMOA-derived meroterpenoids (6-8) and two ergosterol derivates (9-10) were isolated from sterilized rice medium cultured Penicillium sp. NX-05-G-3. Their structures were elucidated by 1D and 2D NMR. The cytotoxicities of all compounds were evaluated, and compounds 1 and 2 showed extensive cytotoxicity against human cancer cell lines Hela, SCC15, MDA-MB-453 and A549, with IC50 values ranging from 17.6 to 32.8 µM.

5.
J Therm Biol ; 123: 103895, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38996476

RESUMO

Global warming may affect the early developmental stages of high-altitude amphibians, thereby influencing their later fitness. Yet, this has been largely unexplored. To investigate whether and how the temperatures experienced by embryonic and larval stages affect their fitness at later developmental stages, we designed two experiments in which the embryos and larvae were treated with three temperatures (24, 18 and 12 °C), respectively. Then, the life history traits of the tadpoles during the metamorphotic climax in all treatments were evaluated, including growth rate, survival rate, morphology, thermal physiology, swimming performance, standard metabolic rate (SMR), oxidative and antioxidative system, and metabolic enzyme activities. The results revealed that elevated temperature accelerated metamorphosis but decreased body size at metamorphosis. Additionally, warming during the embryonic and larval stages decreased the thermal tolerance range and induced increased oxidative stress. Furthermore, high embryonic temperature significantly decreased the hatching success, but had no significant effect on swimming performance and SMR. Warming during larval periods was harmful to the survival and swimming performance of tadpoles. The effect size analysis revealed that the negative impacts of embryonic temperature on certain physiological traits, such as growth and development, survival and swimming performance, were more pronounced than those of larval temperature. Our results highlight the necessity for particular attention to be paid to the early stages of amphibians, notably the embryonic stages when evaluating the impact of global warming on their survival.

6.
Molecules ; 29(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38257215

RESUMO

'Albedo bluing' of fruits occurs in many varieties of citrus, resulting in a significant reduction in their commercial value. We first presented a breakthrough method for successfully extracting and purifying the 'albedo bluing' substance (ABS) from citrus fruits, resulting in the attainment of highly purified ABS. Then, HPLC and UPLC-QTOF-MS were used to prove that ABS in the fruits of three citrus varieties (Citrus reticulate Blanco cv. 'Gonggan', 'Orah', and 'Mashuiju') are identical. However, the chemical structure of ABS remains elusive for many reasons. Fortunately, a more stable derivative of ABS (ABS-D) was successfully obtained. Through various analytical techniques such as HRESIMS, 1D and 2D NMR, and chemical shift calculation, ABS-D was identified as 2,4-dihydroxy-6-(ß-D-glucopyranosyloxy)phenyl(5,6-dihydroxy-7-(ß-D-glucopyranosyloxy)benzo[d]thiazol-2-yl)methanone, indicating that both ABS and its derivative belong to a rare category of benzothiazole glucosides. Furthermore, both ABS and ABS-D demonstrated potent antioxidant abilities. These findings lay the groundwork for further elucidating the chemical structure of ABS and the causative mechanism of the 'albedo bluing' phenomenon in citrus fruits.


Assuntos
Antioxidantes , Citrus , Benzotiazóis , Cromatografia Líquida de Alta Pressão , Glucosídeos
7.
J Environ Sci (China) ; 141: 261-276, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38408827

RESUMO

Metal-organic frameworks (MOFs) have favorable characteristics such as large specific surface area, high porosity, structural diversity, and pore surface modification, giving them great potential for development and attractive prospects in the research area of modern materials electrocatalysis. However, unsatisfactory catalytic activity and poor electronic conductivity are the main challenges facing MOFs. This review focuses on MOF-based materials used in electrocatalysis, based on the types of catalytic reactions that have used MOF-based materials in recent years along with their applications, and also looks at some new electrocatalytic materials and their future development prospects.


Assuntos
Estruturas Metalorgânicas , Catálise , Condutividade Elétrica , Porosidade
8.
J Environ Sci (China) ; 138: 482-495, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135414

RESUMO

In this work, the phosphomolybdate (HPMo) modification strategy was applied to improve the N2 selectivity of MnCo-BTC@SiO2 catalyst for the selective catalytic reduction of NOx, and further, the mechanism of HPMo modification on enhanced catalytic performance was explored. Among MnCo-BTC@SiO2-x catalysts with different HPMo concentrations, MnCo-BTC@SiO2-0.75 catalyst exhibited not only the highest NH3-SCR performance (∼95% at 200-300°C) but also the best N2 selectivity (exceed 80% at 100-300°C) due to the appropriate redox capacity, greater surface acidity. X-ray photoelectron spectrometer (XPS) and temperature programmed reduction of H2 (H2-TPR) results showed that the modification with HPMo reduced the oxidation-reduction performance of the catalyst due to electron transfer from Mo5+ to Mn4+/Mn3+ and prevent the excessive oxidation of ammonia adsorption species. NH3 temperature-programmed desorption of (NH3-TPD) results showed that the modification with HPMo could significantly improve the surface acidity and NH3 adsorption, which enhance the catalytic activity and N2 selectivity. In-situ diffused reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS) revealed that modification with HPMo increased significantly the amount of adsorbed NH3 species on the Bronsted acid site and CB/CL, it suppressed the production of N2O by inhibiting the production of NH species, the deep dehydrogenation of ammonia adsorption species. This study provided a simple design strategy for the catalyst to improve the low-temperature catalytic performance and N2 selectivity.


Assuntos
Amônia , Dióxido de Silício , Amônia/química , Oxirredução , Temperatura , Temperatura Baixa , Catálise
9.
Curr Issues Mol Biol ; 45(4): 2937-2949, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37185716

RESUMO

In the context of climate change, understanding how indigenous amphibians of the Qinghai-Tibet plateau react to stresses and their coping mechanisms could be crucial for predicting their fate and successful conservation. A liver transcriptome for Nanorana pleskei was constructed using high-throughput RNA sequencing, and its gene expression was compared with frogs acclimated under either room temperature or high temperature and also heat wave exposed ones. A total of 126,465 unigenes were produced, with 66,924 (52.92%) of them being annotated. Up to 694 genes were found to be differently regulated as a result of abnormal temperature acclimatization. Notably, genes belonging to the heat shock protein (HSP) family were down-regulated in both treated groups. Long-term exposure to high-temperature stress may impair the metabolic rate of the frog and trigger the body to maintain a hypometabolic state in an effort to survive challenging times. During heat waves, unlike the high-temperature group, mitochondrial function was not impaired, and the energy supply was largely normal to support the highly energy-consuming metabolic processes. Genes were more transcriptionally suppressed when treated with high temperatures than heat waves, and the body stayed in low-energy states for combating these long-term adverse environments to survive. It might be strategic to preserve initiation to executive protein activity under heat wave stress. Under both stress conditions, compromising the protection of HSP and sluggish steroid activity occurred in frogs. Frogs were more affected by high temperatures than by heat waves.

10.
BMC Microbiol ; 23(1): 281, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37784018

RESUMO

BACKGROUND: Angelica polysaccharides (AP) have numerous benefits in relieving type 2 diabetes (T2D). However, the underlying mechanisms have yet to be fully understood. Recent many reports have suggested that altering gut microbiota can have adverse effects on the host metabolism and contribute to the development of T2D. Here, we successfully established the T2D model using the male KKAy mice with high-fat and high-sugar feed. Meanwhile, the male C57BL/6 mice were fed with a normal feed. T2D KKAy mice were fed either with or without AP supplementation. In each group, we measured the mice's fasting blood glucose, weight, and fasting serum insulin levels. We collected the cecum content of mice, the gut microbiota was analyzed by targeted full-length 16S rRNA metagenomic sequencing and metabolites were analyzed by untargeted-metabolomics. RESULTS: We found AP effectively alleviated glycemic disorders of T2D KKAy mice, with the changes in gut microbiota composition and function. Many bacteria species and metabolites were markedly changed in T2D KKAy mice and reversed by AP. Additionally, 16 altered metabolic pathways affected by AP were figured out by combining metagenomic pathway enrichment analysis and metabolic pathway enrichment analysis. The key metabolites in 16 metabolic pathways were significantly associated with the gut microbial alteration. Together, our findings showed that AP supplementation could attenuate the diabetic phenotype. Significant gut microbiota and gut metabolite changes were observed in the T2D KKAy mice and AP intervention. CONCLUSIONS: Administration of AP has been shown to improve the composition of intestinal microbiota in T2D KKAy mice, thus providing further evidence for the potential therapeutic application of AP in the treatment of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Camundongos , Masculino , Animais , Microbioma Gastrointestinal/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/microbiologia , Glicemia/metabolismo , RNA Ribossômico 16S/genética , Camundongos Endogâmicos C57BL , Polissacarídeos/farmacologia
11.
Scand J Immunol ; 98(1): e13271, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38441314

RESUMO

The progression of hepatocellular carcinoma (HCC) involves multifactor, multistep interactions. High expression of interleukin-6 receptor (IL-6R) plays an important role in the occurrence and development of tumours, but the regulatory mechanism of IL-6R expression and its function in HCC have not been fully defined. Western blot was used to evaluate the phosphorylation of key kinases in the JAK2/STAT3 pathway and the protein expression levels of related proliferation molecules, migration molecules and apoptotic molecules. The antiapoptosis, migration and proliferation of cells of each group were analysed with JC-1 to judge the cell apoptosis rate, the EdU method to determine the proliferation vitality of the cells, clone formation experiments and Transwell experiments. High expression of IL-6R in cell lines, lower protein levels of the apoptotic molecules c-Caspase7 and c-Caspase3 and higher protein levels of the proliferative molecules p-P70S6K and migration molecules MMP9 and MMP2 were consistent with stronger antiapoptosis, proliferation and migration. Interestingly, IL-6 upregulated the expression of IL-6R by activating the JAK2/STAT3 signalling pathway. Also, the expression of IL-6R protein was downregulated after lentivirus knockdown of STAT3. In nude mice bearing subcutaneous tumours, upregulation of IL-6R expression after activation of the JAK2/STAT3 signalling pathway by IL-6 significantly increased tumour growth. Moreover, the expression of IL-6R protein was downregulated, and the terminal tumour volume was significantly downregulated in the lentiviral STAT3 knockdown group. IL-6 regulated the transcription of IL-6R through the activation of the JAK2/STAT3 signalling pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/genética , Interleucina-6 , Camundongos Nus , Neoplasias Hepáticas/genética , Receptores de Interleucina-6/genética
12.
BMC Cancer ; 23(1): 87, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36698167

RESUMO

BACKGROUND: Insulin-like growth factor-1 receptor (IGF-1R) promotes cell proliferation and migration and inhibitsapoptosis, all of which can contribute to the development of cancers. METHOD: This study investigated the effect and mechanism of IGF-1R in mediating the desensitization of hepatocellular carcinoma (HCC) to sorafenib. RESULTS: IGF-1R, highly expressed in the HCC cell lines SK-Hep1 and HepG2, promotes cell proliferation, migration, and anti-apoptosis through PI3K / Akt and RAS / Raf / ERK signaling pathways, resulting in HCC resistance to sorafenib. Knockdown of IGF-1R by RNA interference decreased proliferation and cell migration and upregulation of sorafenib-induced apoptosis of HCC cells. In vivo studies demonstrated that IGF-1R knockdown inhibited the growth of SK-Hep1 xenografts. CONCLUSION: These data are evidence that IGF-1R participates in regulating the survival and cell growth of HCC through the PI3K / Akt and RAS / Raf / ERK signaling pathways. Intervention in the expression of IGF-1R may increase the inhibitory effect of sorafenib on HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptor IGF Tipo 1 , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Sorafenibe/farmacologia
13.
Front Zool ; 20(1): 35, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919723

RESUMO

Extreme environmental conditions at high altitude, such as hypobaric hypoxia, low temperature, and strong UV radiation, pose a great challenge to the survival of animals. Although the mechanisms of adaptation to high-altitude environments have attracted much attention for native plateau species, the underlying metabolic regulation remains unclear. Here, we used a multi-platform metabolomic analysis to compare metabolic profiles of liver between high- and low-altitude populations of toad-headed lizards, Phrynocephalus vlangalii, from the Qinghai-Tibet Plateau. A total of 191 differential metabolites were identified, consisting of 108 up-regulated and 83 down-regulated metabolites in high-altitude lizards as compared with values for low-altitude lizards. Pathway analysis revealed that the significantly different metabolites were associated with carbohydrate metabolism, amino acid metabolism, purine metabolism, and glycerolipid metabolism. Most intermediary metabolites of glycolysis and the tricarboxylic acid cycle were not significantly altered between the two altitudes, but most free fatty acids as well as ß-hydroxybutyric acid were significantly lower in the high-altitude population. This may suggest that high-altitude lizards rely more on carbohydrates as their main energy fuel rather than lipids. Higher levels of phospholipids occurred in the liver of high-altitude populations, suggesting that membrane lipids may undergo adaptive remodeling in response to low-temperature stress at high altitude. In summary, this study demonstrates that metabolic profiles differ substantially between high- and low-altitude lizard populations, and that these differential metabolites and metabolic pathways can provide new insights to reveal mechanisms of adaptation to extreme environments at high altitude.

14.
Mediators Inflamm ; 2023: 3951940, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124062

RESUMO

Background: Hepatocellular carcinoma (HCC) remains a challenging medical problem. Cuproptosis is a novel form of cell death that plays a crucial role in tumorigenesis, angiogenesis, and metastasis. However, it remains unclear whether cuproptosis-related genes (CRGs) influence the outcomes and immune microenvironment of HCC patients. Method: From The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases, we obtained the mRNA expression file and related clinical information of HCC patients. We selected 19 CRGs as candidate genes for this study according to previous literature. We performed a differential expression analysis of the 19 CRGs between malignant and precancerous tissue. Based on the 19 CRGs, we enrolled cluster analysis to identify cuproptosis-related subtypes of HCC patients. A prognostic risk signature was created utilizing univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses. We employed independent and stratification survival analyses to investigate the predictive value of this model. The functional enrichment features, mutation signatures, immune profile, and response to immunotherapy of HCC patients were also investigated according to the two molecular subtypes and the prognostic signature. Results: We found that 17 CRGs significantly differed in HCC versus normal samples. Cluster analysis showed two distinct molecular subtypes of cuproptosis. Cluster 1 is preferentially related to poor prognosis, high activity of immune response signaling, high mutant frequency of TP53, and distinct immune cell infiltration versus cluster 2. Through univariate and LASSO Cox regression analyses, we created a cuproptosis-related prognostic risk signature containing LIPT1, DLAT, MTF1, GLS, and CDKN2A. High-risk HCC patients were shown to have a worse prognosis. The risk signature was proved to be an independent predictor of prognosis in both the TCGA and ICGC datasets, according to multivariate analysis. The signature also performed well in different stratification of clinical features. The immune cells, which included regulatory T cells (Treg), B cells, macrophages, mast cells, NK cells, and aDCs, as well as immune functions containing cytolytic activity, MHC class I, and type II IFN response, were remarkably distinct between the high-risk and low-risk groups. The tumor immune dysfunction and exclusion (TIDE) score suggested that high-risk patients had a higher response rate to immune checkpoint inhibitors than low-risk patients. Conclusion: This research discovered the potential prognostic and immunological significance of cuproptosis in HCC, improved the understanding of cuproptosis, and may deliver new directions for developing more efficacious therapeutic techniques for HCC patients.


Assuntos
Apoptose , Carcinoma Hepatocelular , Cobre , Neoplasias Hepáticas , Humanos , Apoptose/genética , Apoptose/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/terapia , Cobre/metabolismo , Cobre/toxicidade , Perfilação da Expressão Gênica , Imunoterapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Prognóstico , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso
15.
J Environ Sci (China) ; 124: 491-504, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182157

RESUMO

Ce1-xZrxO2 composite oxides (molar, x = 0-1.0, interval of 0.2) were prepared by a cetyltrimethylammonium bromide-assisted precipitation method. The enhancement of silver-species modification and catalytic mechanism of adsorption-transformation-desorption process were investigated over the Ag-impregnated catalysts for low-temperature selective catalytic oxidation of ammonia (NH3-SCO). The optimal 5 wt.% Ag/Ce0.6Zr0.4O2 catalyst presented good NH3-SCO performance with >90% NH3 conversion at temperature (T) ≥ 250°C and 89% N2 selectivity. Despite the irregular block shape and underdeveloped specific surface area (∼60 m2/g), the naked and Ag-modified Ce0.6Zr0.4O2 solid solution still obtained highly dispersed distribution of surface elements analyzed by scanning electron microscope-energy dispersive spectrometer (SEM-EDS) (mapping), N2 adsorption-desorption test and X-ray diffraction (XRD). H2 temperature programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS) results indicated that Ag-modification enhanced the mobility and activation of oxygen-species leading to a promotion on CeO2 reducibility and synergistic Ag0/Ag+ and Ce4+/Ce3+ redox cycles. Besides, Ag+/Ag2O clusters could facilitate the formation of surface oxygen vacancies that was beneficial to the adsorption and activation of ammonia. NH3-temperature programmed desorption (NH3-TPD) showed more adsorption-desorption capacity to ammonia were provided by physical, weak- and medium-strong acid sites. Diffused reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments revealed the activation of ammonia might be the control step of NH3-SCO procedure, during which NH3 dehydrogenation derived from NHx-species and also internal selective catalytic reduction (i-SCR) reactions were proposed.


Assuntos
Amônia , Prata , Amônia/química , Catálise , Cetrimônio , Oxirredução , Óxidos , Oxigênio
16.
J Environ Sci (China) ; 125: 112-134, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375898

RESUMO

As the main contributor of the formation of particulate matter as well as ozone, volatile organic compounds (VOCs) greatly affect human health and the environmental quality. Catalytic combustion/oxidation has been viewed as an efficient, economically feasible and environmentally friendly way for the elimination of VOCs. Supported metal catalyst is the preferred type of catalysts applied for VOCs catalytic combustion because of the synergy between active components and support as well as its flexibility in the composition. The presence of support not only plays the role of keeping the catalyst with good stability and mechanical strength, but also provides a large specific surface for the good dispersion of active components, which could effectively improve the performance of catalyst as well as decrease the usage of active components, especially the noble metal amount. Mesoporous molecular sieves, owing to their large surface area, unique porous structures, large pore size as well as uniform pore-size distribution, were viewed as superior support for dispersing active components. This review focuses on the recent development of mesoporous molecular sieve supported metal catalysts and their application in catalytic oxidation of VOCs. The effect of active component types, support structure, preparation method, precursors, etc. on the valence state, dispersion as well as the loading of active species were also discussed and summarized. Moreover, the corresponding conversion route of VOCs was also addressed. This review aims to provide some enlightment for designing the supported metal catalysts with superior activity and stability for VOCs removal.


Assuntos
Ozônio , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/química , Catálise , Oxirredução , Material Particulado , Metais
17.
J Environ Sci (China) ; 126: 308-320, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503759

RESUMO

Energy-saving and efficient monolithic catalysts are hotspots of catalytic purification of industrial gaseous pollutants. Here, we have developed an electrothermal catalytic mode, in which the ignition temperature required for the reaction is provided by Joule heat generated when the current flows through the catalyst. In this paper, Mn/NiAl/NF, Mn/NiFe/NF and Mn/NF metal-based monolithic catalysts were prepared using nickel foam (NF) as the carrier for thermal and electrothermal catalysis of n-heptane. The results indicated that Mn-based monolithic catalysts exhibit high activity in thermal and electrothermal catalysis. Mn/NiFe/NF achieve conversion of n-heptane more than 99% in electrothermal catalysis under a direct-current (DC) power of 6 W, and energy-saving is 54% compared with thermal catalysis. In addition, the results indicated that the introduction of NiAl (or NiFe) greatly enhanced the catalytic activity of Mn/NF, which attributed to the higher specific surface area, Mn3+/Mn4+, Ni3+/Ni2+, adsorbed oxygen species (Oads)/lattice oxygen species (Olatt), redox performance of the catalyst. Electrothermal catalytic activity was significantly higher than thermal catalytic activity before complete conversion, which may be related to electronic effects. Besides, Mn/NiFe/NF has good cyclic and long-term stability in electrothermal catalysis. This paper provided a theoretical basis for applying electrothermal catalysis in the field of VOCs elimination.


Assuntos
Níquel , Óxidos , Compostos de Manganês , Oxigênio
18.
J Cell Mol Med ; 26(10): 2777-2792, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35426224

RESUMO

Multidrug resistance is the main obstacle to curing hepatocellular carcinoma (HCC). Acid-sensing ion channel 1a (ASIC1a) has critical roles in all stages of cancer progression, especially invasion and metastasis, and in resistance to therapy. Epithelial to mesenchymal transition (EMT) transforms epithelial cells into mesenchymal cells after being stimulated by extracellular factors and is closely related to tumour infiltration and resistance. We used Western blotting, immunofluorescence, qRT-PCR, immunohistochemical staining, MTT, colony formation and scratch healing assay to determine ASIC1a levels and its relationship to cell proliferation, migration and invasion. ASIC1a is overexpressed in HCC tissues, and the amount increased in resistant HCC cells. EMT occurred more frequently in drug-resistant cells than in parental cells. Inactivation of ASIC1a inhibited cell migration and invasion and increased the chemosensitivity of cells through EMT. Overexpression of ASIC1a upregulated EMT and increased the cells' proliferation, migration and invasion and induced drug resistance; knocking down ASIC1a with shRNA had the opposite effects. ASIC1a increased cell migration and invasion through EMT by regulating α and ß-catenin, vimentin and fibronectin expression via the AKT/GSK-3ß/Snail pathway driven by TGFß/Smad signals. ASIC1a mediates drug resistance of HCC through EMT via the AKT/GSK-3ß/Snail pathway.


Assuntos
Canais Iônicos Sensíveis a Ácido , Carcinoma Hepatocelular , Transição Epitelial-Mesenquimal , Neoplasias Hepáticas , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta/metabolismo
19.
Biochem Biophys Res Commun ; 593: 84-92, 2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35063774

RESUMO

Esophageal cancer (ESCA) is one of the most common malignant tumors of the digestive system worldwide. As a first-line drug for chemotherapy, cisplatin resistance is the major obstacle in the successful treatment of esophageal cancer. Previous studies largely failed to identify the key genes associated with cisplatin resistance. Hence, the aim of this study was to screen the cisplatin resistance-related genes of esophageal cancer using CRISPR/Cas9 gene-editing technology and Brunello iBar library. Of note, we identified ERCC8 as a novel cisplatin-resistant gene by high-throughput sequencing and cisplatin resistance assays. Based on KEGG and GO analysis, we hypothesized that the mechanism of ERCC8 involvement in cisplatin resistance is through binding to damaged DNA to perform nucleotide excision repair, contributing to the restoration of basic DNA functions and cellular life activities in ESCA. In addition, Cell proliferation and wound healing assay confirmed that ERCC8 had little effect on the proliferation and migration of esophageal cancer cells in vitro. Survival analysis showed that ERCC8 expression was not associated with OS, DSS, or FPI in patients with ESCA. Immuno-infiltration analysis indicated that increased ERCC8 expression is associated with NK cells, macrophages, T helper cells, Th1 cells, and Th2 cells. Collectively, ERCC8 may serve as a new biomarker for predicting cisplatin resistance and have the prospect of becoming an effective target for the clinical treatment of cisplatin resistance in ESCA.


Assuntos
Sistemas CRISPR-Cas , Cisplatino/farmacologia , Enzimas Reparadoras do DNA/genética , Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas/tratamento farmacológico , Edição de Genes , Genoma Humano , Fatores de Transcrição/genética , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Enzimas Reparadoras do DNA/antagonistas & inibidores , Enzimas Reparadoras do DNA/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Humanos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas
20.
Respir Res ; 23(1): 197, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35906696

RESUMO

BACKGROUND: The characteristics of coal dust (CD) particles affect the inhalation of CD, which causes coal worker's pneumoconiosis (CWP). CD nanoparticles (CD-NPs, < 500 nm) and micron particles (CD-MPs, < 5 µm) are components of the respirable CD. However, the differences in physicochemical properties and pulmonary toxicity between CD-NPs and CD-MPs remain unclear. METHODS: CD was analyzed by scanning electron microscopy, Malvern nanoparticle size potentiometer, energy dispersive spectroscopy, infrared spectroscopy, and electron paramagnetic resonance spectroscopy. CCK-8 assay, ELISA, transmission electron microscope, JC-1 staining, reactive oxygen species activity probe, calcium ion fluorescent probe, AO/EB staining, flow cytometry, and western blot were used to determine the differences between CD-NPs and CD-MPs on acute pulmonary toxicity. CCK-8, scratch healing and Transwell assay, hematoxylin-eosin and Masson staining, immunohistochemistry, immunofluorescence, and western blot were applied to examine the effects of CD-NPs and CD-MPs on pneumoconiosis. RESULTS: Analysis of the size distribution of CD revealed that the samples had been size segregated. The carbon content of CD-NPs was greater than that of CD-MPs, and the oxygen, aluminum, and silicon contents were less. In in vitro experiments with A549 and BEAS-2B cells, CD-NPs, compared with CD-MPs, had more inflammatory vacuoles, release of pro-inflammatory cytokines (IL-6, IL-1ß, TNFα) and profibrotic cytokines (CXCL2, TGFß1), mitochondrial damage (reactive oxygen species and Ca2+ levels and decreased mitochondrial membrane potential), and cell death (apoptosis, pyroptosis, and necrosis). CD-NPs-induced fibrosis model cells had stronger proliferation, migration, and invasion than did CD-MPs. In in vivo experiments, lung coefficient, alveolar inflammation score, and lung tissue fibrosis score (mean: 1.1%, 1.33, 1.33) of CD-NPs were higher than those of CD-MPs (mean: 1.3%, 2.67, 2.67). CD-NPs accelerated the progression of pulmonary fibrosis by upregulating the expression of pro-fibrotic proteins and promoting epithelial-mesenchymal transition. The regulatory molecules involved were E-cadherin, N-cadherin, COL-1, COL-3, ZO-1, ZEB1, Slug, α-SMA, TGFß1, and Vimentin. CONCLUSIONS: Stimulation with CD-NPs resulted in more pronounced acute and chronic lung toxicity than did stimulation with CD-MPs. These effects included acute inflammatory response, mitochondrial damage, pyroptosis, and necrosis, and more pulmonary fibrosis induced by epithelial-mesenchymal transition.


Assuntos
Carvão Mineral , Fibrose Pulmonar , Carvão Mineral/toxicidade , Poeira , Humanos , Inflamação , Necrose , Fibrose Pulmonar/metabolismo , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA