Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Sci Data ; 10(1): 221, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37105968

RESUMO

Magnetic resonance imaging (MRI) is a non-invasive neuroimaging technique that is useful for identifying normal developmental and aging processes and for data sharing. Marmosets have a relatively shorter life expectancy than other primates, including humans, because they grow and age faster. Therefore, the common marmoset model is effective in aging research. The current study investigated the aging process of the marmoset brain and provided an open MRI database of marmosets across a wide age range. The Brain/MINDS Marmoset Brain MRI Dataset contains brain MRI information from 216 marmosets ranging in age from 1 and 10 years. At the time of its release, it is the largest public dataset in the world. It also includes multi-contrast MRI images. In addition, 91 of 216 animals have corresponding high-resolution ex vivo MRI datasets. Our MRI database, available at the Brain/MINDS Data Portal, might help to understand the effects of various factors, such as age, sex, body size, and fixation, on the brain. It can also contribute to and accelerate brain science studies worldwide.


Assuntos
Encéfalo , Callithrix , Imageamento por Ressonância Magnética , Animais , Encéfalo/diagnóstico por imagem , Bases de Dados Factuais , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Fatores Etários
2.
Eur J Neurosci ; 35(1): 44-55, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22211742

RESUMO

In an early stage of the postnatal development of cats, orientation maps mature and spatial frequency selectivity is consolidated. To investigate the time course of orientation map maturation associated with the consolidation of spatial frequency selectivity, we performed optical imaging of intrinsic signals in areas 17 and 18 of cats under the stimulation of drifting square-wave gratings with different orientations and spatial frequencies. First, orientation maps for lower spatial frequencies emerged in the entire part of the lateral gyrus, which includes areas 17 and 18, and then these orientation maps in the posterior part of the lateral gyrus disappeared as orientation maps for higher spatial frequencies matured. Independent of age, an anteroposterior gradient of response strengths from lower to higher spatial frequencies was observed. This indicates that the regional distribution of spatial frequencies is innately determined. The size of iso-orientation domains tended to decrease as the stimulus spatial frequency increased at every age examined. In contrast, orientation representation bias changed with age. In cats younger than 3 months, the cardinal (vertical and horizontal) orientations were represented predominantly over the oblique orientations. However, in young adult cats from 3 to 9 months old, the representation bias switched to predominantly oblique orientations. These age-dependent changes in the orientation representation bias imply that orientation maps continue to elaborate within postnatal 1 year with the consolidation of spatial frequency selectivity. We conclude that both intrinsic and mutual factors lead to the development of orientation maps and spatial frequency selectivity.


Assuntos
Mapeamento Encefálico , Estimulação Luminosa/métodos , Córtex Visual/anatomia & histologia , Córtex Visual/fisiologia , Animais , Gatos , Orientação/fisiologia , Vias Visuais/anatomia & histologia , Vias Visuais/fisiologia
3.
Front Neuroinform ; 14: 41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973480

RESUMO

To date, numerous mathematical models have been proposed on the basis of some types of Hebbian synaptic learning to account for the activity-dependent development of orientation maps as well as neuronal orientation selectivity. These models successfully reproduced orientation map-like spatial patterns. Nevertheless, we still have questions: (1) How does synaptic rewiring occur in the visual cortex during the formation of orderly orientation maps in early life? (2) How does visual experience contribute to the maturation of orientation selectivity of visual cortical neurons and reorganize orientation maps? (3) How does the sensitive period for orientation plasticity end? In this study, we performed animal experiments and mathematical modeling to understand the mechanisms underlying synaptic rewiring for experience-dependent formation and reorganization of orientation maps. At first, we visualized orientation maps from the intrinsic signal optical imaging in area 17 of kittens reared under single-orientation exposure through cylindrical-lens-fitted goggles. The experiments revealed that the degree of expansion of cortical domains representing the experienced orientation depends on the age at which the single-orientation exposure starts. As a result, we obtained the sensitive period profile for orientation plasticity. Next, we refined our previously proposed mathematical model for the activity-dependent self-organization of thalamo-cortical inputs on the assumption that rewiring is caused by the competitive interactions among transient synaptic contacts on the same dendritic spine. Although various kinds of molecules have been reported to be involved in such interactions, we attempt to build a mathematical model to describe synaptic rewiring focusing on brain-derived neurotrophic factor (BDNF) and its related molecules. Performing computer simulations based on the refined model, we successfully reproduced orientation maps reorganized in kittens reared under single-orientation exposure as well as normal visual experience. We also reproduced the experimentally obtained sensitive period profile for orientation plasticity. The excellent agreement between experimental observations and theoretical reproductions suggests that the BDNF-induced competitive interaction among synaptic contacts from different axons on the same spine is an important factor for the experience-dependent formation and reorganization of orientation selectivity and orientation maps.

4.
Neuroscience ; 446: 145-156, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32866602

RESUMO

The pulvinar, the largest thalamic nucleus in the primate brain, has connections with a variety of cortical areas and is involved in many aspects of higher brain functions. Among cortico-pulvino-cortical systems, the connection between the middle temporal area (MT) and the pulvinar has been thought to contribute significantly to complex motion recognition. Recently, the common marmoset (Callithrix jacchus), has become a valuable model for a variety of neuroscience studies, including visual neuroscience and translational research of neurological and psychiatric disorders. However, information on projections from MT to the pulvinar in the marmoset brain is scant. We addressed this deficiency by injecting sensitive anterograde viral tracers into MT to examine the distribution of labeled terminations in the pulvinar. The injection sites were placed retinotopically according to visual field coordinates mapped by optical intrinsic imaging. All injections produced anterograde terminal labeling, which was densest in the medial nucleus of the inferior pulvinar (PIm), sparser in the central nucleus of the inferior pulvinar, and weakest in the lateral pulvinar. Within each subnucleus, terminations formed separate retinotopic fields. Most labeled terminals were small but these comingled with a few large terminals, distributed mainly in the dorsomedial part of the PIm. Our results further delineate the organization of projections from MT to the pulvinar in the marmoset as forming parallel complex networks, which may differentially contribute to motion processing. It is interesting that the densest projections from MT target the PIm, the subnucleus recently reported to preferentially receive direct retinal projections.


Assuntos
Pulvinar , Córtex Visual , Animais , Mapeamento Encefálico , Callithrix , Córtex Cerebral , Núcleos Talâmicos , Vias Visuais
5.
eNeuro ; 5(2)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29736410

RESUMO

Natural sound is composed of various frequencies. Although the core region of the primate auditory cortex has functionally defined sound frequency preference maps, how the map is organized in the auditory areas of the belt and parabelt regions is not well known. In this study, we investigated the functional organizations of the core, belt, and parabelt regions encompassed by the lateral sulcus and the superior temporal sulcus in the common marmoset (Callithrix jacchus). Using optical intrinsic signal imaging, we obtained evoked responses to band-pass noise stimuli in a range of sound frequencies (0.5-16 kHz) in anesthetized adult animals and visualized the preferred sound frequency map on the cortical surface. We characterized the functionally defined organization using histologically defined brain areas in the same animals. We found tonotopic representation of a set of sound frequencies (low to high) within the primary (A1), rostral (R), and rostrotemporal (RT) areas of the core region. In the belt region, the tonotopic representation existed only in the mediolateral (ML) area. This representation was symmetric with that found in A1 along the border between areas A1 and ML. The functional structure was not very clear in the anterolateral (AL) area. Low frequencies were mainly preferred in the rostrotemplatal (RTL) area, while high frequencies were preferred in the caudolateral (CL) area. There was a portion of the parabelt region that strongly responded to higher sound frequencies (>5.8 kHz) along the border between the rostral parabelt (RPB) and caudal parabelt (CPB) regions.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Callithrix/fisiologia , Potenciais Evocados Auditivos/fisiologia , Neuroimagem Funcional/métodos , Imagem Óptica/métodos , Animais , Córtex Auditivo/diagnóstico por imagem , Feminino , Masculino
6.
Front Neuroanat ; 12: 89, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425625

RESUMO

Neural activity in the middle temporal (MT) area is modulated by the direction and speed of motion of visual stimuli. The area is buried in a sulcus in the macaque, but exposed to the cortical surface in the marmoset, making the marmoset an ideal animal model for studying MT function. To better understand the details of the roles of this area in cognition, underlying anatomical connections need to be clarified. Because most anatomical tracing studies in marmosets have used retrograde tracers, the axonal projections remain uncharacterized. In order to examine axonal projections from MT, we utilized adeno-associated viral (AAV) tracers, which work as anterograde tracers by expressing either green or red fluorescent protein in infected neurons. AAV tracers were injected into three sites in MT based on retinotopy maps obtained via in vivo optical intrinsic signal imaging. Brains were sectioned and divided into three series, one for fluorescent image scanning and two for myelin and Nissl substance staining to identify specific brain areas. Overall projection patterns were similar across the injections. MT projected to occipital visual areas V1, V2, V3 (VLP) and V4 (VLA) and surrounding areas in the temporal cortex including MTC (V4T), MST, FST, FSTv (PGa/IPa) and TE3. There were also projections to the dorsal visual pathway, V3A (DA), V6 (DM) and V6A, the intraparietal areas AIP, LIP, MIP, frontal A4ab and the prefrontal cortex, A8aV and A8C. There was a visuotopic relationship with occipital visual areas. In a marmoset in which two tracer injections were made, the projection targets did not overlap in A8aV and AIP, suggesting topographic projections from different parts of MT. Most of these areas are known to send projections back to MT, suggesting that they are reciprocally connected with it.

7.
J Neurosci Methods ; 160(2): 206-14, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17046067

RESUMO

To examine the effect of experience on the developmental plasticity of functional maps in the visual cortex, we need to establish a method for a stable visual experience manipulation under the freely moving condition. For this purpose, we fabricated goggles that are chronically mounted stably on the animal's head, but easy to replace according to the animal's growth. Here we report the design of the goggles and the method of mounting them on the head of animals. By this method, combined with the intrinsic signal optical imaging technique, we were able to observe a rapid and robust reorganization of orientation maps.


Assuntos
Óculos , Neurofisiologia/instrumentação , Orientação/fisiologia , Estimulação Luminosa/instrumentação , Vias Visuais/crescimento & desenvolvimento , Percepção Visual/fisiologia , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos , Mapeamento Encefálico/instrumentação , Mapeamento Encefálico/métodos , Gatos , Óculos/normas , Neurofisiologia/métodos , Óptica e Fotônica/instrumentação , Estimulação Luminosa/métodos , Retina/fisiologia , Processamento de Sinais Assistido por Computador , Córtex Visual/crescimento & desenvolvimento , Campos Visuais/fisiologia
8.
Front Neural Circuits ; 11: 17, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28367117

RESUMO

The common marmoset (Callithrix jacchus) is one of the smallest species of primates, with high visual recognition abilities that allow them to judge the identity and quality of food and objects in their environment. To address the cortical processing of visual information related to material surface features in marmosets, we presented a set of stimuli that have identical three-dimensional shapes (bone, torus or amorphous) but different material appearances (ceramic, glass, fur, leather, metal, stone, wood, or matte) to anesthetized marmoset, and recorded multiunit activities from an area ventral to the superior temporal sulcus (STS) using multi-shanked, and depth resolved multi-electrode array. Out of 143 visually responsive multiunits recorded from four animals, 29% had significant main effect only of the material, 3% only of the shape and 43% of both the material and the shape. Furthermore, we found neuronal cluster(s), in which most cells: (1) showed a significant main effect in material appearance; (2) the best stimulus was a glossy material (glass or metal); and (3) had reduced response to the pixel-shuffled version of the glossy material images. The location of the gloss-selective area was in agreement with previous macaque studies, showing activation in the ventral bank of STS. Our results suggest that perception of gloss is an important ability preserved across wide range of primate species.


Assuntos
Callithrix/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Percepção de Forma/fisiologia , Lobo Temporal/fisiologia , Percepção Visual/fisiologia , Animais , Lobo Temporal/anatomia & histologia
9.
J Neurosci Methods ; 291: 51-60, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28802702

RESUMO

BACKGROUND: The visual system in primates can be segregated into motion and shape pathways. Interaction occurs at multiple stages along these pathways. Processing of shape-from-motion and biological motion is considered to be a higher-order integration process involving motion and shape information. However, relatively limited types of stimuli have been used in previous studies on these integration processes. NEW METHOD: We propose a new algorithm to extract object motion information from natural movies and to move random dots in accordance with the information. The object motion information is extracted by estimating the dynamics of local normal vectors of the image intensity projected onto the x-y plane of the movie. RESULTS: An electrophysiological experiment on two adult common marmoset monkeys (Callithrix jacchus) showed that the natural and random dot movies generated with this new algorithm yielded comparable neural responses in the middle temporal visual area. COMPARISON WITH EXISTING METHODS: In principle, this algorithm provided random dot motion stimuli containing shape information for arbitrary natural movies. This new method is expected to expand the neurophysiological and psychophysical experimental protocols to elucidate the integration processing of motion and shape information in biological systems. CONCLUSIONS: The novel algorithm proposed here was effective in extracting object motion information from natural movies and provided new motion stimuli to investigate higher-order motion information processing.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Movimento (Física) , Gravação em Vídeo , Potenciais de Ação , Animais , Callithrix , Microeletrodos , Percepção de Movimento/fisiologia , Neurônios/fisiologia , Estimulação Luminosa , Lobo Temporal/fisiologia , Gravação em Vídeo/métodos , Vias Visuais/fisiologia
10.
J Neurosci Methods ; 286: 102-113, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28577985

RESUMO

BACKGROUND: The brain of the common marmoset (Callithrix jacchus) is becoming a popular non-human primate model in neuroscience research. Because its brain fiber connectivity is still poorly understood, it is necessary to collect and present connection and trajectory data using tracers to establish a marmoset brain connectivity database. NEW METHOD: To visualize projections and trajectories of axons, brain section images were reconstructed in 3D by registering them to the corresponding block-face brain images taken during brain sectioning. During preprocessing, autofluorescence of the tissue was reduced by applying independent component analysis to a set of fluorescent images taken using different filters. RESULTS: The method was applied to a marmoset dataset after a tracer had been injected into an auditory belt area to fluorescently label axonal projections. Cortical and subcortical connections were clearly reconstructed in 3D. The registration error was estimated to be smaller than 200 µm. Evaluation tests on ICA-based autofluorescence reduction showed a significant improvement in signal and background separation. COMPARISON WITH EXISTING METHODS: Regarding the 3D reconstruction error, the present study shows an accuracy comparable to previous studies using MRI and block-face images. Compared to serial section two-photon tomography, an advantage of the proposed method is that it can be combined with standard histological techniques. The images of differently processed brain sections can be integrated into the original ex vivo brain shape. CONCLUSIONS: The proposed method allows creating 3D axonal projection maps overlaid with brain area annotations based on the histological staining results of the same animal.


Assuntos
Mapeamento Encefálico , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Callithrix/anatomia & histologia , Imageamento Tridimensional , Vias Neurais/diagnóstico por imagem , Animais , Imageamento por Ressonância Magnética
11.
Neurosci Res ; 55(4): 370-82, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16780978

RESUMO

In the visual cortex, pinwheel centers, which appear as point singularities in orientation maps, are likely to be found at the centers of ocular dominance columns in normal cats and monkeys. To elucidate the mechanism underlying the geometrical relationship, we performed computer simulation based on our correlation-based self-organization model. The simulation showed that pinwheel centers tended to be located at the ocular dominance centers at higher correlations of activities between the left- and right-eye specific pathways, whereas they tended to appear along the borders of ocular dominance columns at lower correlations. This tendency was mathematically analyzed with a formula describing the condition determining the geometrical relationship between pinwheel centers and ocular dominance columns. Moreover, to examine the effect of activity correlations in the eye-specific pathways on the column formation, we conducted intrinsic signal optical imaging using normally reared cats and dark-reared cats. The between-eye activity correlation in dark-reared cats is expected to be lower than that in normal cats due to the lack of common visual input in the two eyes. The statistical analysis of experimental data showed that while more pinwheel centers tended to be located in the center subregion of ocular dominance columns than in the border subregion in the normal cats, a weak tendency in the opposite direction was found in the dark-reared cats. Based on the consistent results from the model and experiment, it is suggested that the activity correlation between the left- and right-eye specific pathways has influence on the establishment of geometrical relationship in the cortical representation between orientation preference and ocular dominance.


Assuntos
Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Animais , Gatos , Dominância Ocular/fisiologia , Eletrofisiologia/instrumentação , Eletrofisiologia/métodos , Modelos Neurológicos , Rede Nervosa/anatomia & histologia , Vias Neurais/anatomia & histologia , Neurônios/fisiologia , Distribuição Normal , Óptica e Fotônica , Estimulação Luminosa , Privação Sensorial/fisiologia , Visão Binocular/fisiologia , Córtex Visual/anatomia & histologia , Vias Visuais/anatomia & histologia
12.
Neuroreport ; 26(18): 1133-9, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26512934

RESUMO

Cortical areas in the superior temporal sulcus (STS) of primates have been recognized as a part of the 'social brain'. In particular, biological motion stimuli elicit neuronal responses in the STS, indicating their roles in the ability to understand others' actions. However, the spatial organization of functionally identified STS cells is not well understood because it is difficult to identify the precise locations of cells in sulcal regions. Here, using a small New World monkey, the common marmoset (Callithrix jacchus) that has a lissencephalic brain, we investigated the spatial organization of the cells responsive to other's actions in STS. The neural responses to movies showing several types of other's actions were recorded with multicontact linear-array electrodes that had four shanks (0.4 mm spacing), with eight electrode contacts (0.2 mm spacing) for each shank. The four shanks were penetrated perpendicular to the cortical surface. We found that STS cells significantly responded to other's goal-directed actions, such as when an actor marmoset was reaching for and grasping a piece of food. The response profiles to the movies were more similar between the vertically positioned electrodes than horizontally positioned electrodes when the distances between electrodes were matched. This indicates that there are functional columns in the higher-order visual areas in STS of the common marmoset.


Assuntos
Percepção de Movimento/fisiologia , Neurônios/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Percepção Social , Lobo Temporal/fisiologia , Animais , Callithrix , Estimulação Luminosa
13.
Sci Rep ; 5: 16712, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26567927

RESUMO

Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure.


Assuntos
Orientação/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Gatos , Fenômenos Eletrofisiológicos , Dispositivos de Proteção dos Olhos , Imagem Óptica , Estimulação Luminosa
14.
Okajimas Folia Anat Jpn ; 89(1): 7-13, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22975743

RESUMO

We report the anatomical findings of a case of horseshoe kidney, and analyze the associations between kidney position and surplus renal arteries in horseshoe kidneys found in Japanese autopsies in the past. The horseshoe kidney of our case fused at the lower poles of the original kidneys. Its right and left upper poles were at the middle region of the first and second lumbar vertebrae, respectively. The kidney was supplied by eight arteries. Our analysis of the correlation between the ascent of a horseshoe kidney and the number of surplus arteries found no significant association. However, there was a significant association between the region of the kidney where the surplus arteries entered and the location where they diverged from the aorta. Therefore, the ascent of a horseshoe kidney is not necessarily arrested because of the existence of many surplus arteries. After a horseshoe kidney partially ascends, the arteries which might become normal renal arteries are generated. In our case, we observed large splenomegaly, and noted that the left upper pole was the lowest compared with the horseshoe kidneys in the past autopsy reports. We suggest it is necessary to consider additional influences that determine the position of a horseshoe kidney.


Assuntos
Rim/anormalidades , Artéria Renal/anormalidades , Idoso de 80 Anos ou mais , Variação Anatômica , Humanos , Rim/irrigação sanguínea , Masculino
15.
Front Neuroanat ; 5: 63, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22013412

RESUMO

The granular retrosplenial cortex (GRS) in the rat has a distinct microcolumn-type structure. The apical tufts of dendritic bundles at layer I, which are formed by layer II neurons, co-localize with patches of thalamic terminations from anteroventral (AV) thalamic nucleus. To further understand this microcolumn-type structure in the GRS, one of remaining questions is whether this structure extends into other layers, such as layers III/IV. Other than layer I, previous tracer injection study showed that AV thalamic nucleus also projects to layer III/IV in the GRS. In this study, we examined the morphology of branches in the GRS from the AV thalamus in single axon branch resolution in order to determine whether AV axon branches in layer III/IV are branches of axons with extensive branch in layer I, and, if so, whether the extent of these arborizations in layer III/IV vertically matches with that in layer I. For this purpose, we used a small volume injection of biotinylated dextran-amine into the AV thalamus and reconstructing labeled single axon branches in the GRS. We found that the AV axons consisted of heterogeneous branching types. Type 1 had extensive arborization occurring only in layer Ia. Type 2 had additional branches in III/IV. Types 1 and 2 had extensive ramifications in layer Ia, with lateral extensions within the previously reported extensions of tufts from single dendritic bundles (i.e., 30-200 µm; mean 78 µm). In type 2 branches, axon arborizations in layer III/IV were just below to layer Ia ramifications, but much wider (148-533 µm: mean, 341 µm) than that in layer Ia axon branches and dendritic bundles, suggesting that layer-specific information transmission spacing existed even from the same single axons from the AV to the GRS. Thus, microcolumn-type structure in the upper layer of the GRS was not strictly continuous from layer I to layer IV. How each layer and its components interact each other in different spatial scale should be solved future.

16.
PLoS One ; 4(4): e5380, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19401781

RESUMO

Orientation selectivity of primary visual cortical neurons is an important requisite for shape perception. Although numerous studies have been previously devoted to a question of how orientation selectivity is established and elaborated in early life, how the susceptibility of orientation plasticity to visual experience changes in time remains unclear. In the present study, we showed a postnatal sensitive period profile for the modifiability of orientation selectivity in the visual cortex of kittens reared with head-mounted goggles for stable single-orientation exposure. When goggle rearing (GR) started at P16-P30, 2 weeks of GR induced a marked over-representation of the exposed orientation, and 2 more weeks of GR consolidated the altered orientation maps. GR that started later than P50, in turn, induced the under-representation of the exposed orientation. Orientation plasticity in the most sensitive period was markedly suppressed by cortical infusion of NMDAR antagonist. The present study reveals that the plasticity and consolidation of orientation selectivity in an early life are dynamically regulated in an experience-dependent manner.


Assuntos
Plasticidade Neuronal/fisiologia , Orientação/fisiologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologia , 2-Amino-5-fosfonovalerato/administração & dosagem , Fatores Etários , Animais , Gatos , Plasticidade Neuronal/efeitos dos fármacos , Orientação/efeitos dos fármacos , Estimulação Luminosa , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia , Córtex Visual/efeitos dos fármacos
17.
J Neural Eng ; 6(6): 066002, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19794238

RESUMO

Recently, intrinsic signal optical imaging has been widely used as a routine procedure for visualizing cortical functional maps. We do not, however, have a well-established imaging method for visualizing cortical functional connectivity indicating spatio-temporal patterns of activity propagation in the cerebral cortex. In the present study, we developed a novel experimental setup for investigating the propagation of neural activities combining the intracortical microstimulation (ICMS) technique with voltage sensitive dye (VSD) imaging, and demonstrated the feasibility of this setup applying to the measurement of time-dependent intra- and inter-hemispheric spread of ICMS-evoked excitation in the cat visual cortices, areas 17 and 18. A microelectrode array for the ICMS was inserted with a specially designed easy-to-detach electrode holder around the 17/18 transition zones (TZs), where the left and right hemispheres were interconnected via the corpus callosum. The microelectrode array was stably anchored in agarose without any holder, which enabled us to visualize evoked activities even in the vicinity of penetration sites as well as in a wide recording region that covered a part of both hemispheres. The VSD imaging could successfully visualize ICMS-evoked excitation and subsequent propagation in the visual cortices contralateral as well as ipsilateral to the ICMS. Using the orientation maps as positional references, we showed that the activity propagation patterns were consistent with previously reported anatomical patterns of intracortical and interhemispheric connections. This finding indicates that our experimental system can serve for the investigation of cortical functional connectivity.


Assuntos
Eletrofisiologia/métodos , Potenciais Evocados , Vias Neurais/fisiologia , Córtex Visual/fisiologia , Animais , Gatos , Corpo Caloso/fisiologia , Estimulação Elétrica , Feminino , Lateralidade Funcional , Microeletrodos , Óptica e Fotônica/métodos , Fatores de Tempo
18.
Neuroimage ; 30(2): 462-77, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16275019

RESUMO

To elucidate the effect of visual experience on the development of orientation maps, we conducted intrinsic signal optical imaging of the visual cortex of kittens that were continuously exposed to a single orientation through cylindrical-lens-fitted goggles under a freely moving condition starting at post-natal week 3. We observed a rapid reorganization of orientation maps, characterized by extensive representation of exposed orientations with reduced responsiveness to unexposed orientations. The over-representation of exposed orientation was marked for 1-2 weeks of goggle rearing. A longer period of goggle rearing, however, decreased the degree of over-representation, which still remained at a remarkable level. Dark rearing episodes daily interleaved between single orientation exposures moderated the over-representation effect. Unit recording from goggle-reared kittens showed preferred orientations consistent with optical imaging. Using c-Fos immunoreactivity mapping, we showed that the number of neurons strongly responding to the exposed orientation was 3 times larger in a goggle-reared cat than the number of neurons responding to the vertical orientation in a normal cat. Taken together, these results suggest that the reorganization of orientation maps was caused by the expansion of domains maximally responding to exposed orientation as well as the strong reduction of responses to unexposed orientations.


Assuntos
Encéfalo/fisiologia , Orientação/fisiologia , Algoritmos , Animais , Mapeamento Encefálico , Gatos , Eletrodos Implantados , Eletrofisiologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Luz , Estimulação Luminosa , Proteínas Proto-Oncogênicas c-fos/biossíntese , Proteínas Proto-Oncogênicas c-fos/fisiologia , Visão Monocular/fisiologia
19.
J Neurophysiol ; 89(2): 1112-25, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12574484

RESUMO

Neuronal activity in the early visual cortex has been extensively studied from the standpoint of contour representation. On the other hand, representation of the interior of a surface surrounded by a contour is much less well understood. Several studies have identified neurons activated by a uniform surface covering their receptive fields, but their distribution within the cortex is not yet known. The aim of the present study was to obtain a better understanding of the distribution of such neurons in the visual cortex. Using optical imaging of intrinsic signals, we found that there are a group of surface-responsive regions located in area 18, along the area 17/18 border, that tend to overlap the singular points of the orientation-preference map. Extracellular recordings confirmed that neurons responsive to uniform plane stimuli are accumulated in these regions. Such neurons also existed outside the surface-responsive regions around the singular points. These results suggest that there exists a functional organization related to the representation of a uniform surface in the early visual cortex.


Assuntos
Mapeamento Encefálico/métodos , Neurônios/fisiologia , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Animais , Artefatos , Gatos , Eletrofisiologia , Óptica e Fotônica , Orientação/fisiologia , Estimulação Luminosa , Córtex Visual/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA